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Abstract Concepts of emergence and autonomy are central to
artificial life and related cognitive and behavioral sciences. However,
quantitative and easy-to-apply measures of these phenomena are
mostly lacking. Here, I describe quantitative and practicable measures
for both autonomy and emergence, based on the framework of
multivariate autoregression and specifically Granger causality.
G-autonomy measures the extent to which knowing the past of
a variable helps predict its future, as compared to predictions
based on past states of external (environmental) variables. G-emergence
measures the extent to which a process is both dependent upon and
autonomous from its underlying causal factors. These measures are
validated by application to agent-based models of predation (for
autonomy) and flocking (for emergence). In the former, evolutionary
adaptation enhances autonomy; the latter model illustrates not only
emergence but also downward causation. I end with a discussion
of relations among autonomy, emergence, and consciousness.
1 Introduction
Concepts of emergence and autonomy are central to artificial life and related cognitive and behavioral
sciences. However, quantitative and easy-to-apply measures of these phenomena are mostly lacking.
This is unfortunate, because the ability to measure a phenomenon is an essential step toward its effec-
tive scientific description [13]. In this article, I introduce quantitative and practicable measures for
both autonomy and emergence, based on the framework of multivariate autoregression and specifically
Granger causality [19]. These measures are validated by application to simple agent-based models of
predator-prey behavior (for autonomy) and flocking (for emergence).

1.1 Autonomy
Autonomy has a wide variety of meanings. A non-exhaustive list might include the ability to learn, the
ability to self-recharge, and the ability to operate without power cables or without teleoperation. A more
abstract definition of autonomy as “organizational closure” is prominent in the work of Varela (see, e.g.,
[47]). Here, motivated by practical applicability, I adopt a simple conception of autonomy as the degree
of self-determination of a system [10]. Following Bertschinger and colleagues [9], I amplify this concept
in two ways: (i) An autonomous system should not be fully determined by its environment, and (ii) a
random system should not have a high autonomy value. I introduce a quantitative measure, G-autonomy,
which operationalizes this notion. Broadly, a G-autonomous variable is one for which prediction of its
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future evolution is enhanced by considering its own past states, as compared to predictions based on
past states of a set of external variables. This measure is based on Granger causality, a statistical interpreta-
tion of causality according to which a signal A causes a signal B if information in the past of A helps
predict the future of B, over and above predictions based on the past of B alone [19, 37].

Having a practically applicable measure of autonomy is useful for gaining insight into mechanisms
underlying apparently autonomous behavior in organisms, as well as into selective pressures that can
lead to increases or decreases in autonomy. For example, in the simulation model described in Section 3,
evolutionary adaptation increases autonomy in a predator-prey system. Autonomy measures are not
limited to analysis of agent behavior; one can measure the autonomy of any variable that varies over
time with respect to other variables. For example, it is possible to measure the autonomy of the activity
of brain regions with respect to activity in other regions, and to assess the task and state dependence of
these relations.
1.2 Emergence
The concept of emergence has a long history of philosophical discussion [11, 27]. Its essence, however,
is simple enough: An emergent property is in a qualitative sense “more than the sum” of its component
parts. Emergent properties appear to arise in complex systems of all kinds: biological, cognitive, social,
and technological. Broadly speaking, artificial life and complexity science focus on explaining phenom-
ena that seem to involve emergence, and models constructed under these auspices are often described
as emergent [6–8].

Following Bedau, emergence can be differentiated into three categories: strong, weak, and nominal [6,
7] (see also [5, 46]). The least controversial is nominal emergence, which is simply the notion of a kind of
property that can be possessed by macro-level objects or processes but not by their micro-level constitu-
ents. For example, a circle is nominally emergent from the set of points from which it is constructed.

Most controversial is the notion of strong emergence, which involves two related claims. First, a
macro-level property is in principle not deducible from micro-level observations. Second, macro-level
properties have irreducible causal powers. The first claim rejects mechanistic explanations altogether,
apparently calling a halt to scientific advance in the absence of new principles of nature [12]. The second
involves the problematic notion of downward causation. Downward causation is problematic firstly because
it contravenes the plausible doctrine that “the macro is the way it is in virtue of how things are at the
micro,” an idea that has been expressed variously as causal fundamentalism [25] or supervenience [27]. A
second challenge raised by downward causation is that of resolving conflicts between micro-level
and macro-level causes [7].

In between strong emergence and nominal emergence lies the useful notion of weak emergence [6–
8], according to which a macro-level property is derived from the interaction of micro-level components
but in complicated ways such that the macro-level property has no simple micro-level explanation. In
contrast to strong emergence, weakly emergent properties are in principle deducible from micro-level
components, and in contrast to nominal emergence, the micro-to-macro inferential pathways must be
nontrivial. According to Bedau, weakly emergent macro-level properties are ontologically dependent on and
reducible to micro-level causal factors, but at the same time they are epistemologically irreducible due to the
complexity of the micro-to-macro inferential pathways. More specifically, on Bedauʼs view a weakly
emergent property is one that has an incompressible explanation. An incompressible explanation is one
which requires “crawling the causal web” of a system, that is, aggregating and iterating all micro-level
interactions over time.1 According to Bedau, weak emergence can occur in degrees; however, these
degrees are qualitative rather than quantitative (e.g., properties with actually incompressible explana-
tions, properties with compressible explanations that cannot be understood, and so on). In this view,
there remains no way to measure quantitatively the degree of weak emergence exhibited by a system.
1 In previous work Bedau has expressed the same idea with different terms, namely that a weakly emergent property is “underivable
except by simulation” [7]. His new terminology shifts emphasis from derivation to explanation but is nonetheless equivalent. The
present notion of G-emergence is based neither on simulation nor on explanation, but on prediction.
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Here, I propose a continuous version of weak emergence that leverages bothGranger causality and the
measure of autonomy, G-autonomy, introduced above. I describe a new quantitative measure,G-emergence,
which operationalizes the notion that a weakly emergent process is simultaneously autonomous from
and dependent upon its underlying causal factors. I show that this measure behaves appropriately in a
simulation model reflecting a canonical instance of emergence—flocking behavior—and I show how
G-emergence can support a practically useful and ontologically innocent means of ascribing downward
causality from macro levels to micro levels.

1.3 Organization
The remainder of this article is arranged as follows. Section 2 provides the mathematical detail under-
pinning Granger causality, G-autonomy, and G-emergence. Sections 3 and 4 describe simulation
models of predator-prey interaction and flocking behavior, which serve to validate G-autonomy and
G-emergence, respectively. Section 5 discusses wider issues raised by having quantitative measures of
autonomy and emergence, including concepts of downward causality and the relation between emer-
gence and consciousness.
2 Theoretical Framework
2.1 Granger Causality
In 1969 Granger introduced the idea of Granger causality (G-causality) as a formalization, in terms of
linear regression modeling, of Wienerʼs intuition that Y causes X if knowing Y helps predict the future
of X [19, 37]. According to G-causality, Y causes X if the inclusion of past observations of Y reduces
the prediction error of X in a linear regression model of X and Y, as compared to a model that includes
only previous observations of X. Since its introduction, G-causality has found wide application in
economics and many other fields, including neuroscience and climatology [16, 38]. It is important
to recognize that G-causality is a statistical formulation of causality, such that a significant G-causality
interaction does not by itself imply the presence of a corresponding physical interaction [20].

To illustrate G-causality, suppose that the temporal dynamics of two time series X1(t ) and X2(t )
(both of length T ) can be described by a bivariate autoregressive model:

X1ðtÞ ¼
Xp
j¼1

A11; jX1ðt � jÞ þ
Xp
j¼1

A12; jX2ðt � jÞ þ s1ðtÞ;
ð1ÞXp Xp
X2ðtÞ ¼
j¼1

A21; jX1ðt � jÞ þ
j¼1

A22; jX2ðt � jÞ þ s2ðtÞ;

where p is the maximum number of lagged observations included in the model (the model order p <
T ),A contains the coefficients of the model, and s1, s2 are the residuals (prediction errors) for each time
series. If the variance of s1 (or s2) is reduced by the inclusion of theX2 (orX1) terms in the first (or second)
equation, then it is said that X2 (or X1) G-causes X1 (or X2). Assuming that X1 and X2 satisfy covariance
stationarity (i.e., unchangingmean and variance), the magnitude of this interaction can bemeasured by the
log ratio of the prediction error variances for the restricted (R) and unrestricted (U ) models:

gc2→1 ¼ log
varðs1Rð12ÞÞ
varðs1UÞ

; ð2Þ

where s1R(12) is derived from the model omitting theA12,j (for all j ) coefficients in the first equation, and
s1U is derived from the full model. Importantly, G-causality is easy to generalize to the multivariate
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(conditional) case in which the G-causality ofX1 is tested in the context of multiple variablesX2,… ,XN

(Xi 6¼Xj for allXi, j). In this case,X2 G-causesX1 if knowingX2 reduces the variance inX1ʼs prediction
error when the activities of all other variables X3,… , Xn are also included in the regression model.

Extensions to standard G-causality include frequency-domain implementations, which are widely
used in neurophysiology [18, 26], and a new partial G-causality, which exploits correlations between
residuals in order to partly eliminate the influence of unmeasured variables [22]. In this article, how-
ever, I consider only the simple time-domain formulation given above.
2.2 G-autonomy
The framework of G-causality provides a straightforward means of operationalizing autonomy as
self-determination, or self-causation. Instead of asking whether the prediction error of X1 is reduced
by including past observations of X2, the G-autonomy measure asks whether the prediction error of
X1 is reduced by inclusion of its own past, given a set of external variables X2,… ,N. That is, a variable
X1 is G-autonomous to the extent that its own past states help predict its future states over and
above predictions based on past states of a set of external variables X2,… ,N. Put simply, a variable is
G-autonomous to the extent that it is dependent on its own history and that these dependencies are
not accounted for by external factors.

Recalling Equation 1, if the variance of s1 (or s2) is reduced by the inclusion of theX1 (orX2) terms
in the first (or second) equation, then it is said that X1 (or X2) is G-autonomous with respect to X2 (or
X1). In other words, X1 is G-autonomous if the coefficients in A11 are jointly significantly different
from zero. As with G-causality, this can be tested by performing an F-test of the null hypothesis that
A11 = 0, given assumptions of covariance stationarity on X1 and X2. By analogy with G-causality, the
G-autonomy of X1 with respect to X2 is given by

gaX1jX2
¼ log

varðs1Rð11ÞÞ
varðs1UÞ

; ð3Þ

where s1R(11) is derived from the model omitting the coefficientsA11, j (for all j ) in the Granger equations.
2.3 G-emergence
G-emergence is a continuous version of weak emergence, in which a macro property is weakly emergent
to the extent that it is not deducible from micro-level observations. G-causality and G-autonomy together
provide the necessary ingredients for operationalizing G-emergence. According to G-emergence, a
macro variable M is emergent from a set of micro variables m if and only if (i) M is G-autonomous
with respect tom and (ii)M is G-caused bym. A simple measure for the G-emergence ofM fromm is
therefore given by

geMjm ¼ gaMjm
1
N

XN
i¼1

gcmi → M

!
:

 
ð4Þ

This measure captures the basic intuition about weak emergence that it involves dependence on under-
lying processes, and that at the same time it involves autonomy from underlying processes [6]. Impor-
tantly, geM|m will be zero either if M is independent of m or if M is fully predicted by m.

A criticism of G-emergence as measured using linear regression modeling is that a macro variable may
appear to be G-emergent by virtue of being a nonlinear function of its micro-level components. Clearly,
a satisfying measure of emergence should not rely on the failure of linear methods to detect nonlinear
dependencies. Fortunately, it is easy to extend G-causality (and hence G-autonomy and G-emergence)
to nonlinear situations. One simple method, given below, is to use a Taylor expansion. In the following
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example the set of variables has been expanded to three in order to illustrate extension to the conditional
(n > 2) case:

X1ðtÞ ¼
Xq
k¼1

Xp
j¼1

A11; j ;kXk
1 ðt � jÞ þ

Xq
k¼1

Xp
j¼1

A12; j ;kXk
2 ðt � jÞ þ

Xq
k¼1

Xp
j¼1

A13; j ;kXk
3 ðt � jÞ þ s1ðtÞ;

X2ðtÞ ¼
Xq
k¼1

Xp
j¼1

A21; j ;kXk
1 ðt � jÞ þ

Xq
k¼1

Xp
j¼1

A22; j ;kXk
2 ðt � jÞ þ

Xq
k¼1

Xp
j¼1

A23; j ;kXk
3 ðt � jÞ þ s2ðtÞ;

X3ðtÞ ¼
Xq
k¼1

Xp
j¼1

A31; j ;kXk
1 ðt � jÞ þ

Xq
k¼1

Xp
j¼1

A32; j ;kXk
2 ðt � jÞ þ

Xq
k¼1

Xp
j¼1

A33; j ;kXk
3 ðt � jÞ þ s3ðtÞ;

ð5Þ

where q is the number of polynomial terms to be included in the Taylor expansion. Assuming thatX1 is
a macro-level variable and X2,3 are micro-level variables, the G-emergence of X1 from X2,3 is given by

geX1jX2;X3 ¼ log
varðs1Rð11ÞÞ
varðs1UÞ

� 1
2

log
varðs1Rð12ÞÞ
varðs1UÞ

þlog
varðs1Rð13ÞÞ
varðs1UÞ

� �
; ð6Þ

where, following the previous convention, s1R(ab) is derived from the model omitting the Aab

coefficients in Equation 5. Avalue of the linear or nonlinear G-emergence can be considered statistically
significant if the corresponding G-autonomy and G-causality measures are themselves statistically sig-
nificant. This can be assessed by F-tests on the null hypothesis that the coefficients in A11 (G-auton-
omy) and A12,… , AN (G-causality) are zero [18, 19].

The concept of G-emergence does not depend on using a particular method for nonlinear re-
gression. There exist other, more sophisticated methods than Taylor expansions, which can be less
sensitive to noisy observations and which involve fewer parameters. For example, Ancona and col-
leagues have shown that radial basis functions can serve as effective regression kernels for measuring
nonlinear Granger causality [3]. However, for present purposes the Taylor method is preferable be-
cause it is simple to describe and to implement, statistical significance can easily be assessed, and it
supplies an explicit formula for G-emergence (Equation 6).

3 Simulation Models: G-autonomy
3.1 Validation of G-autonomy
G-autonomy can be validated by application to time series that have different self-causation char-
acteristics by construction. Consider the multivariate system X, illustrated in Figure 1:

X1ðtÞ ¼ s1ðtÞ;
X2ðtÞ ¼ aX1ðt � 1Þ þ ð1� aÞs2ðtÞ;
X3ðtÞ ¼ bX3ðt � 2Þ þ ð1� bÞs3ðtÞ;
X4ðtÞ ¼ cX3ðt � 1Þ þ ð1� cÞs4ðtÞ;
X5ðtÞ ¼ dX1ðt � 2Þ þ dX5ðt � 2Þ þ ds5ðtÞ:

ð7Þ

In this system, s1,… ,5 are independent white noise processes, the parameters a, b, c are all equal to 0.5,
and d = 1/3. To calculate G-autonomy values, 10,000 values of each time series were generated and
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an order-2 multivariate regression model was computed, using ordinary least squares [24]. Table 1
shows the G-autonomy values for each variable. For comparison, the G-causality values among vari-
ables are also shown.

Table 1 shows that G-autonomy satisfies several intuitive requirements for a quantitative measure
of autonomy. X1 has a G-autonomy of zero, which is expected because it is a white noise process. X2

also has a G-autonomy of zero, because it is a combination of a white noise process and influences from
another white noise process,X1.X3 has a high G-autonomy because its future evolution can be partially
predicted from its own past in a way that does not depend on the other variables (X1,X2,X4,X5).X4 has
a low G-autonomy because, although its future can be partially predicted by its own past, the accuracy of
this prediction is due entirely to influence fromX3. Finally,X5 has a highG-autonomy because, likeX3, it
contains an autoregressive component that is not accounted for by the other variables. Thus, in this ex-
ample and in general, a variable has highG-autonomy if and only if its future can be better predicted from
its own past after taking into account the predictive contribution of a set of external variables.

It is instructive to compare the G-autonomy values with the corresponding G-causality values. There
are three significant G-causality interactions: X1 → X2, X3 → X4, and X1 → X5, as expected from
the construction of X (see Figure 1). Notice that while both X1 and X3 exert G-causal influences on
other variables, X3 is G-autonomous whereas X1 is not. Also, X1 G-causes both X2 and X5, but X5 is
G-autonomous whereas X2 is not. Therefore, knowing the set of G-causalities among variables is not
sufficient to know the G-autonomies of each variable with respect to others in the set.

3.2 G-autonomy in a Predator-Prey Model
As a more general test of the utility of G-autonomy, I now consider a simple agent-basedmodel in which
a predator agent moves in a 2D toroidal plane populated by mobile prey. This model is used to investigate
184 Artificial Life Volume 16, Number 2
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Figure 1. Schematic of constructed causal relations in the system X described in Equation 7.
Table 1. G-autonomy and G-causality values for an illustrative data set generated from X (Equation 7). G-autonomies are
along the diagonal (boldface). G-causalities are arranged so that the column variable G-causes the row variable. Note
that G-causalities are conditional because they are derived from a fully multivariate model. Statistically significant value
(p < 0.01) are indicated with an asterisk.
X1
 X2
 X3
 X4
 X5
X1
 0
 0.03
 0
 0.5
 0
X2
 8.4*
 0
 0
 0
 0
X3
 0.6
 0.4
 7.9*
 0.3
 0
X4
 0
 0
 7.7*
 0
 0
X5
 7.3*
 0.7
 0.3
 0
 7.0*
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whether G-autonomy applied to predator behavior captures intuitive characteristics of autonomous be-
havior as self-determination, and whether evolutionary adaptation influences G-autonomy in a predator-
prey context.
3.2.1 Experimental Conditions
In the model there are two types of prey, red and green, and the predator has two internal batteries,
one corresponding to each prey type. Four experimental conditions are compared:
1. Predator moves randomly.

2. Predator behavior is determined by environment.

3. Predator behavior is determined by a combination of environment and internal state.

4. Predator behavior is controlled by an evolved neural network.
In each condition there are three red prey and three green prey. Prey move at a speed of 3 distance
units per time step (u/ts). The environment is 200 u by 200 u in size. In all conditions prey change
heading each time step by an angle randomly chosen from the range [�k/8, k/8]. If the predator
comes within 10 u of a prey, the corresponding battery is fully replenished. Batteries otherwise deplete
by 1 u/ts from an initial value of 300.

In all conditions the predator moves at a speed of 4 u/ts, that is, slightly faster than prey. In con-
dition 1, the predator changes direction each time step by an angle randomly chosen from the range
[�k/8, k/8]. In condition 2, the predator adjusts its heading at each time step to point toward the red
prey that was closest at the beginning of the trial. In condition 3, the predator adjusts its heading each
time step to point toward the nearest red prey if the red battery level is lower than the green battery
level, or otherwise toward the nearest green prey. In condition 4, the predator heading is controlled by
a feedforward neural network optimized using a genetic algorithm to maximize the average level of
both batteries, as described in the Appendix.
3.2.2 Results and Analysis
Each condition of the model was run for 10 trials of 10,000 ts each (following evolution in condition 4).
From each trial, seven time series were generated, corresponding to the trajectories of the predator and
the six prey. To prevent edge effects, each time series (a1,… , a7) consisted of the average of the hori-
zontal and vertical displacement of the predator or prey from the midlines of the environment, that is,

aiðtÞ ¼ 0:5ðjxiðtÞ � 100j þ j yiðtÞ � 100jÞ:

Each time series was then first-order differenced [i.e., a(t)→ a(t)� a(t� 1)] in order to ensure covariance
stationarity [36]. After differencing, all time series from all conditions were covariance stationary ( p <
0.01, Dickey-Fuller test). Each resulting data set was used to construct a multivariate autoregressive
model of order p = 4. This model order was chosen according to the Akaike information criterion
(AIC) [1] (the mean minimum AIC, computed from all data sets, was 3.9).2 To verify that the order-4
models sufficiently described the data, it was noted that the mean adjusted residual-sum-square RSSadj
was sufficiently high (0.86 ± 0.07). Each model was then used to calculate predator G-autonomy values
(Equation 3). G-autonomies were averaged across the 10 trials in each condition. For comparison, a non-
linear G-autonomy was also calculated via a Taylor series expansion method as described in Section 2.3.
2 To check robustness, the analysis was repeated with p = 8, because the maximum lowest AIC (among conditions) was 7.8. The results
were unchanged from p = 4.
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Figure 2 shows sample trajectories of predator and prey from each condition. All conditions exhibit
rich behavioral dynamics. By inspection, only condition 2 (follow the nearest red prey) appears clearly
distinguishable from the others, as might be expected given the simplicity of the rule governing predator
behavior in this condition.

Figure 3 shows the average predator G-autonomy values in each condition, for both linear (A) and
nonlinear (B) analyses. Random predator movement (condition 1) produces high G-autonomy, as ex-
pected, because random movement in this model is not a white noise process; rather, it implies that the
predator changes direction unpredictably, so that the best predictors of future predator position are
recent past positions.3 Also as expected, condition 2 produces low G-autonomy, because the predator
position is now well predicted by past positions of a particular prey.

Predator G-autonomy in condition 3 is higher than in condition 2, but lower than the upper
bound provided by random movement (condition 1). This reflects the fact that predator behavior
in this condition is driven both by the position of a nearby prey and by the relative levels of the two
internal batteries. Notably, G-autonomy in condition 4 is significantly higher than in condition 3,
suggesting that evolutionary adaptation in the model leads to increased G-autonomy. A possible
Figure 2. Example predator and prey trajectories from each condition (200 ts are shown). A, predator moves randomly;
B, predator behavior is determined by environment; C, predator behavior is determined by a combination of environment
and internal state; D, predatory behavior is controlled by an evolved neural network. Blue shows predator trajectory; red
and green show red and green prey trajectories respectively. (Color online.)
3 Note that apredator (t) in this condition is not a true random walk. Therefore, even after first-order differencing, past positions remain
useful predictors of present positions.
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explanation for this is that the evolved controller has the opportunity to take the internal state into
account at every time step, and not only at those time steps at which the lowest battery level changes
from red to green or vice versa as is the case in condition 3. G-autonomy in condition 4 remains
lower than in condition 1 because predator position can still be partially predicted by prey position.
Results from linear and nonlinear analyses were qualitatively identical.

3.3 G-Autonomy Summary
The G-autonomy measure quantifies and amplifies the concept of autonomy as self-determination. The
measure behaves appropriately both in a constructed system and in a simulation model of predation. A
striking finding in the latter case was that evolutionary adaptation enhanced predator G-autonomy. This
is consistent with the general notion that evolutionary processes promote autonomy [30, 34] and opens
the way toward explicit modeling of the relation between evolution and autonomy.
4 Simulation Models: G-Emergence

A canonical example of emergence is a flock of starlings wheeling in the sky before they roost: The flock
seems to have a shape and trajectory of its own, which transcends those of the individual birds (Figure 4).
Figure 3. A: Mean predator G-autonomy for each condition. Error bars show standard deviations. All comparisons are
statistically significant (two-tailed t-test, p < 0.001, after Bonferroni correction for multiple comparisons). B: Mean pre-
dator nonlinear G-autonomy for each condition.
Figure 4. A flock of starlings over Brighton pier. Photo courtesy of Eduardo Izquierdo.
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In a seminal ALife work, Reynolds [33] showed that visually compelling bird flocking can be simulated by
combining three simple rules for simulated birds (boids):
• Aggregation. Each boid tends to fly toward the perceived center of mass (CM) of the flock.

• Avoidance. Each boid tends to avoid colliding with other nearby boids.

• Matching. Each boid tends to align its velocity with that of other nearby boids.
Here, a simple boids simulation is used to test whether visually compelling flocking correlates with
high G-emergence of the CM of the flock (the macro variable) with respect to the trajectories of the
individual boids (the micro variables).

N= 10 boids are simulated in a toroidal square environment of length 200 u. Boids are initializedwith
positions and velocities randomly chosen from the range [0, 200] (x, y position), [0, 2k] (heading), and
[3, 9] (speed). At each time step the heading ai and speed si of each boid i are updated synchronously
according to

ai ¼ ai þ a1u1 þ a2ðkþ u2Þ þ a3u3 þ r1;
si ¼ si þ a4ds þ r2;

where u1 is the bearing to the perceived CM (i.e., the CM not including boid i ), u2 is the bearing to the
nearest boid, u3 is the bearing to the mean heading of all other boids within a 20-u range, ds is the dif-
ference between the speed of boid i and the mean speed of all other boids within 20 u, and r1 and r2 are
random numbers in the range [�0.01,0.01]. The parameter vector a (all a∈ [0, 1]) determines the relative
contribution of each factor. Toroidal distances are calculated in the standard way, as the minimum dis-
tance either across, or not across, the boundary. CM positions are calculated iteratively in order to mini-
mize the summed toroidal distances to the boids (i.e., not as the average boid position, which can lead to
boundary artifacts).

Three different conditions were tested. Condition R (random) produces near-random boid behavior
(aR = [0.01, 0.01, 0.01, 0.01]). Condition L (low) evokes poor flocking behavior by imposing a strong
dependence on velocity matching; boids in this condition tend to move in semi-rigid formations (aL =
[0.1, 0.1, 0.6, 0.6]). Condition H evokes compelling flocking behavior; the parameter set (aH = [0.1, 0.3,
0.3, 0.3]) was selected by hand. Examples of boid and CM trajectories from each condition are shown in
Figure 5. Although static images do not fully capture the dynamic nature of flocking, it is clear that boid
trajectories in condition H are more flocklike than those in conditions L and R.
4.1 Results and Analysis
For each condition the boid simulation was run 25 times with each run lasting 5000 ts; for each run
the x, y coordinates of each boid and the global CM were recorded. Several preprocessing steps were
carried out prior to calculation of G-emergence. As in the predator-prey model, each x, y coordinate pair
was transformed into a single variable reflecting distance from the center of the environment. The first
500 data points were removed to eliminate initial transients, and each resulting time series was trans-
formed into its zero-mean equivalent. Finally, each time series was first-order differenced in order to
ensure covariance stationarity. Following preprocessing, for each run in each condition both linear and
nonlinear G-emergence of the CM were computed using a model order p = 5 and (for the nonlinear
analysis) a polynomial order q = 3. The model order was selected based on the average AIC across all
75 runs.

Figure 5 (top left) shows the mean linear and nonlinear G-emergence of the CM in each condition.
Confirming the prediction that high-G-emergence tracks compel flocking, both linear and nonlinear
measures show significantly higher values of G-emergence in condition H than in conditions L and
R. All values of G-emergence in conditions H and L were significant (P < 10-5 for G-autonomy and
G-causality, two-tailed t-test); those in condition R were not.
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To test the behavior of G-emergence across different parameter combinations in the boids model,
linear and nonlinear G-emergence values were calculated for each parameter vector in the space a(1,2,3)∈
{0.0, 0.1, … , 1.0}. Parameters a3 and a4 were yoked together because they both influence the same
rule (velocity matching), and three evaluations were carried out for each vector, requiring a total of 11 ×
11 × 11 × 3 = 3993 evaluations. Figure 6 shows G-emergence for three orthogonal cross sections
through the three-dimensional parameter space; in each cross section the vector corresponding to aH
(condition H) is marked by the intersection of the green lines.

Several aspects of the above cross sections are notable. First, as with the G-autonomy results, linear
and nonlinear G-emergence are strongly correlated, suggesting that even linear measures can provide
insight into emergent properties in some complex systems. Second, in most regions of parameter space
G-emergence changes smoothly, suggesting it is a robust measure. However, some regions show sharp
transitions, for example between some vectors with a1 = 0 and neighboring vectors. The sensitivity of
G-emergence to these transitions indicates that it can usefully identify parameter regions of complex
models in which nontrivial weak emergence is present.
4.2 Downward Causation
A common intuition regarding emergence is that it involves downward causation from macro levels to
micro levels. For proponents of strong emergence, downward causation is in fact an essential aspect
of what it means to be emergent [27]. However, physical interpretations of downward causation
pose tricky ontological problems, for example, how to resolve competing micro and macro causes
[7]. G-emergence, being statistically defined, provides an ontologically innocent alternative according
to which downward causation is reflected by G-causality from the macro variable(s) to the micro
variable(s).
Figure 5. G-emergence of the center of mass (CM) of a boid flock. Top left: Mean and standard deviation of linear and
nonlinear G-emergence by condition (asterisks show statistical significance). Other panels: Example trajectories (500-ts
segment) of the boids (gray) and CM (red) in conditions H (high G-emergence), L (low G-emergence), and R (random).
(Color online.)
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Figure 7 shows downward (Granger) causation from the global CM to the individual boid trajectories,
for both linear and nonlinear G-causality measures. Averages are taken across all boids and across all
25 runs in each condition. Consistent with an association between emergence and downward causation,
both measures of downward causation are significantly higher in condition H than in condition R or L.

The above result aside, it seems possible in principle for weak emergence to occur without down-
ward causation (strong emergence requires downward causation by definition). Having separately ap-
plicable measures of weak emergence and downward causation makes it possible to explore conditions
in which emergence and downward causation do not occur together, potentially refining and deepening
the concept of emergence.
4.3 Emergence Summary
G-emergence is a quantitative, intuitive, and practically straightforward measure of weak emergence. It
is based on the intuition that emergent properties are both dependent on and autonomous from their com-
ponents [6, 8] and is operationalized using linear and nonlinear time series analysis. In a simulation of
bird flocking, visually compelling flocking behavior is accompanied by high G-emergence as compared
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to random movement or flight in rigid formations. High G-emergence is also accompanied by down-
ward (Granger) causation from the flock to each boid, though this may not be the case for all systems.

5 Discussion

Having the ability to measure a phenomenon is an essential step toward its effective scientific description
[13]. Moreover, measures do not exist in a vacuum; they must prove themselves by iteratively building
knowledge in the context of theoretical frameworks. The ultimate virtue in a measure is not its a priori
robustness, but its ability to build on intuitions, identify interesting divides in nature, and then correct
the foundations on which it was built [43]. In this article I have introduced and illustrated measures of
two important properties of complex systems—autonomy and emergence—in precisely this spirit. A
MATLAB (Natick, MA) toolbox containing functions for calculating G-causality and G-autonomy
(and hence also G-emergence) is freely available from the authorʼs web site (http://www.anilseth.com);
the toolbox is described elsewhere [41].

5.1 Autonomy
G-autonomy provides an intuitive and easily applicable quantitative measure of autonomy based on the
concept of self-determination. It can be applied not only to behavioral data, but also to time series data
reflecting internal variables (e.g., neuronal activity, metabolic activity), or indeed to any multivariate data
set in which autonomy is of interest. A G-autonomous variable is not simply one with a significant
autoregressive component; rather, it is a variable with an autoregressive component that remains sig-
nificant after taking into account the predictive ability of a set of external variables; G-autonomy there-
fore provides additional information to that found in a set of G-causalities among variables.

An important open question is the relation between G-autonomy and autonomy as conceived within
the autopoietic framework, that is, autonomy as “organizational closure” or “the condition of subordinat-
ing all changes to themaintenance of the organization” [29, p. 135]. The two concepts seem closely related.
For example, from an evolutionary perspective, selection may favor both behavioral autonomy and orga-
nizational closure, with the latter as a precursor to the former. Another point of connection is that orga-
nizationally closed descriptions may be emergent with respect to lower descriptive levels, for the reason
Figure 7. Downward causation is significantly higher in condition H than in condition L or R. Boxplots show linear and
nonlinear G-causality from the global CM to individual boids, calculated separately for each boid for all 25 runs in each
condition (i.e., 250 values per boxplot). Non-significant causalities were set to zero (nominal threshold of 0.01, Bonferroni
corrected to 10-5). Resulting distributions are non-normal, and differences between conditions were tested using the
Wilcoxon rank sum test. For both linear and nonlinear analyses all pairwise comparisons among medians were significantly
different (p < 10-3). Each boxplot shows lower quartile, median, and upper quartile values; whiskers show range of remaining
data, and + denotes outliers.
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that organizational closure implies some indifference toward internal “microscopic” operations [2].
Further work is required to examine these possibilities.

Another important open question is that of autonomy in reciprocally causal systems. What does it
mean for an agent to be autonomous if its behavior is both caused by and causal to an external environ-
ment? Finally, measurement of G-autonomy requires that all elements of a system show changing
activity over time. It is not possible at present to measure the G-autonomy of an agent with respect
to a static feature of the environment.

5.1.1 Relation to Other Measures
A similar approach, though not one tested in agent-based models, has been developed by Bertschinger
and colleagues [9]. These authors propose measuring the conditional mutual information between con-
secutive states of a system, conditioned on the history of the environment. Information-theoretic ap-
proaches are naturally nonlinear and therefore are in principle more general than autoregressive
frameworks. For example, transfer entropy [35] may be considered to be a more general version of Granger
causality. However, information-theoretic measures require adequate sampling of potential outcomes in
order to estimate probability distributions. Such sampling can be very challenging for multivariate sys-
tems (>2 variables). Scaling to multivariate systems is in general less severe for autoregressive ap-
proaches, though it can still be challenging [16]. Furthermore, autoregressive approaches benefit
from standard methods for testing for statistical significance and have natural spectral interpretations
(see Section 2.1).

Another difference between the two approaches is that Bertschinger et al. propose two distinct mea-
sures, one (as stated above) for cases in which the system cannot influence its environment, and another
(the non-conditioned mutual information between consecutive system states) for cases in which the
system has full control over the environment. G-autonomy is applicable equally in both cases, without
modification, as well as in the common intermediate case in which the system and the environment
mutually constrain and influence each other.
5.2 Emergence
G-emergence operationalizes a continuous version of weak emergence, such that a macro property is
weakly emergent to the extent that it is both causally dependent on and autonomous from its micro-level
components. Because G-emergence is based on a statistical interpretation of causality, it sidesteps con-
ceptual pitfalls such as competition among micro and macro causes, while providing an objective and
graded assessment of the nontriviality of micro-to-macro inferential pathways. In contrast to Bedauʼs
concept of “incompressibility of explanation”G-emergence does not require proving a negative; more-
over, from the perspective of measurement a continuous value is more useful than a binary, or catego-
rical, classification.

Under what circumstances could G-emergence be high? A macro variable could be G-emergent
from a set of micro variables if there are hidden, or latent, influences, that is, relevant micro causal
factors that are not represented in the regression model. However, even if all micro causal factors
are represented, G-emergence can still exceed zero because of dependence on the prediction algorithm
used. It is plausible, and indeed necessary for G-emergence to be useful in practice, that macro variables
vary in their epistemic transparency to a given prediction algorithm, relative to collections of corre-
sponding micro variables. Clearly, if the system itself were used as the prediction “algorithm,” then
G-emergence would always be zero, since on the present view it is assumed that micro causes are jointly
sufficient to give rise to macro properties.

5.2.1 Property Emergence versus Temporal Emergence
Intuitively, emergence refers either to a macro-level property that is “more than the sum of” the micro-
level parts ( property, or “synchronic,” emergence) or to the appearance of a qualitatively distinctive new
phenomenon over time (temporal, or “diachronic,” emergence). Temporal emergence is well illustrated
by the appearance of new morphological features during embryogenesis and development. Because a
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temporally emergent process is by definition statistically nonstationary, it cannot be measured by
G-emergence. Nonetheless, it is plausible that such processes are bracketed by statistically stationary
periods with different G-emergence properties. In this way, G-emergence could be used indirectly to
infer temporal emergence.

5.2.2 Phase Transitions
Physicists have recently become interested in the onset of collective behaviors among boidlike self-
propelling particles [21, 48]. In such systems, phase transitions can be observed among gaseous phases
(each particle moves independently), liquid phases (particles move collectively but still diffuse with re-
spect to each other), and solid phases (particles move collectively and remain fixed with respect to each
other). Plausibly, these phases correspond respectively to conditions R, H, and L of the model described
in Section 4, and the sharp boundaries noted in Figure 6 may correspond to phase transitions. However,
phase transition analyses tend to focus on the dynamics of transition and assume that emergent be-
havior is phenomenologically obvious in some phases and is absent in others. In contrast, G-emergence
focuses on detecting the degree of emergence by making physical measurements on a system.

5.2.3 Relation to Other Measures
The intuition that variations in predictive ability may be important in defining macro-level properties is
shared by Shalizi and Moore [44]. However, these authors focus on clarifying the concept of a macro
state, and they do not explicitly combine measures of autonomy and causal dependence. Rather, one
process is called emergent from another if it has a higher predictive efficiency than the process it derives
from. Their measure of predictive efficiency is based on information-theoretic model reconstruction
(the epsilon-machine concept [14]), which is powerful but less easy to apply in practice than the
G-causality approach described here (see also the related concept of statistical complexity [15]). A related
approach is taken by Polani [31], in which an “emergent description” involves a further step of decom-
posing systems into independent informational subcomponents.

According to the contextual emergence of Atmanspacher, derivation of macro-level properties requires
knowledge of micro-level properties and of contingent contextual conditions, the latter defined at the
macro level and implemented in terms of stability criteria according to a dynamical systems analysis [4].
This concept diverges from the doctrine of causal fundamentalism (or supervenience) by proposing that
micro-level properties offer necessary but not sufficient conditions for deriving macro-level properties.
As with weak emergence, contextual emergence addresses questions of epistemology rather than on-
tology [4]. By contrast, Bar-Yam offers an explicit measure of strong (ontological) emergence, which is
based on measuring the entropy of a system at multiple scales [5]. Oscillations in “multiscale variety” are
suggested to reveal constraints on the values of multiple variables that are not present among subsets of
these variables, and the existence of such constraints is taken to indicate strong emergence.
5.3 Strong Emergence and Consciousness
The philosopher David Chalmers has made explicit a recurring idea, which is that there is exactly one
clear case of a strongly emergent phenomenon, and that is the phenomenon of consciousness [12]. It
seems that two commonly held intuitions about consciousness drive this suspicion. First, the idea that
even complete knowledge of the physical interactions sustained by brains will not provide an under-
standing of what it is like to have a conscious experience: This is the infamous “hard problem” of
consciousness [12]. Second, the intuition that conscious states have causal efficacy in the world [32],
as exemplified by the notion of free will, but which runs through all aspects of consciousness; after all,
why have experiences at all if they do not do anything? These intuitions map cleanly onto the defining
features of strong emergence, namely, that macro-level properties in principle cannot be identified from
micro-level observations, and that macro-level properties have irreducible causal powers.

These intuitions can, however, be challenged. First, to expect a scientific resolution to the “hard
problem” as it is presently conceived may be to misunderstand the role of science in explaining nature.
A scientific theory cannot presume to replicate the experience it describes or explains; a theory of a
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hurricane is not a hurricane [42]. If the phenomenal aspect of experience is irreducible, so is the fact that
physics has not explained why there is something rather than nothing, and this has not prevented physi-
cists from laying bare many mysteries. Second, consciousness can be functionally efficacious without
assuming downward causation. It is entirely plausible that certain neural mechanisms support useful
functions by virtue of the fact that they entail conscious experiences [40]. For example, the neural
mechanisms underlying consciousness may serve to integrate large amounts of information over short
time periods, leading to functionally effective high-dimensional discriminations among a large repertoire
of sensorimotor scenes [45]. Such information integration may entail consciousness in just the same way
that the molecular structure of hemoglobin entails a particular spectroscopic response: It simply could
not be otherwise [17]. Moreover, experiences of free will and volition are just experiences like any other,
and there is a wealth of experimental evidence showing, unsurprisingly, that awareness of a voluntary
action is preceded by recognizable signatures in neural activity [23, 28]. Together, these points suggest
that the association of consciousness with strong emergence does not rest on solid ground.

In contrast, it is very likely that the connection between neural mechanism and conscious experi-
ence involves weak emergence in many ways. A striking feature of conscious experience is that it seems
more than the sum of its parts (each conscious experience is a unity) and that it has a vivid temporality
(William Jamesʼ “stream of consciousness”). Models of consciousness that can be analyzed in terms of
weak emergence therefore have the potential to explain features of phenomenology in terms of dy-
namic processes at the level of neural mechanism. The development and experimental testing of such
explanatory correlates [39] is a highly promising avenue toward a scientific description of consciousness.
For example, one could hypothesize that the extent to which a conscious experience includes a voli-
tional component will correlate with the measurable downward G-causality from macro-level descrip-
tions of brain dynamics relevant to consciousness to corresponding micro-level descriptions. It is
exciting to consider that measures of weak emergence may eventually find utility in accounting for
apparent free will and in crossing the explanatory gap between neural mechanism and phenomenal
experience.
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Appendix: Predator Neural Network and Genetic Algorithm

In condition 4 of the predator-prey model (Section 3), predators are simulated robots with six sensors,
four of which are grouped in two left-right pairs. Two sensor pairs respond to the nearest red and green
prey, and the response of each pair decays linearly with distance. If the nearest prey is to the left (right)
of the predator, the first (second) sensor of the corresponding pair increases its response by a factor
0.5(|u|/(k/2)), where u is the bearing to the prey (range [�k, k]). If |u| > k/2, the corresponding
sensor pair does not respond. The third sensor pair responds linearly to the level of red and green
batteries. All sensor activities are linearly scaled to range from �3 to +3.

Predators are controlled by an 11-node feedforward neural network. The six sensors determine
the input to six input neurons. The input neurons are fully connected to a layer of three intermediate
neurons, which are fully connected to the two output neurons. Each neuron implements a sigmoidal
transfer function mapping an input range [�10, 10] onto an output of range [0, 1]. The motor out-
put neurons are scaled to range from 0 to 5 to set the left and right wheel speeds. The forward speed
is fixed at 4 u/ts to enable comparison with other experimental conditions, and the angular velocity
is calculated as the difference between the wheel speeds divided by the robot diameter (5 u).

Network parameters are encoded as real numbers (range [0, 1]) on a 29-element genotype. The
first five alleles specify biases for the intermediate neurons and output neurons (range [�3, 3]). The
remaining 23 elements specify connection weights (range [�3, 3]). The fitness of each genotype is
calculated as the average of five evaluations. The fitness of each evaluation is calculated as the summed
levels of the two batteries for the lifetime of the predator. If either battery reaches zero, the evaluation
is terminated (this constraint is removed during data analysis, for which it is important to obtain time
series of consistent and extended length). Otherwise, evaluations last for 1000 ts. Positions and head-
ings of predator and prey are initialized randomly at the start of each evaluation.

A genetic algorithm was used to evolve a population of 30 genotypes for 250 generations. The algo-
rithm used stochastic rank-based selection with elitism and with a mutation probability of 0.09 per allele.
Each mutation changed the allele value by a number randomly chosen from the range [�0.2, 0.2] with
reflection at the boundaries (0,1). High fitness was reliably achieved after approximately 100 generations.
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