
Incremental Construction of Minimal
Acyclic Finite-State Automata

Jan Daciuk� Stoyan Mihovy

Technical University of Gdańsk Bulgarian Academy of Sciences

Bruce W. Watsonz Richard E. Watsonx

University of Pretoria

In this paper, we describe a new method for constructing minimal, deterministic, acyclic finite-
state automata from a set of strings. Traditional methods consist of two phases: the first to construct
a trie, the second one to minimize it. Our approach is to construct a minimal automaton in a
single phase by adding new strings one by one and minimizing the resulting automaton on-the-
fly. We present a general algorithm as well as a specialization that relies upon the lexicographical
ordering of the input strings. Our method is fast and significantly lowers memory requirements
in comparison to other methods.

1. Introduction

Finite-state automata are used in a variety of applications, including aspects of natural
language processing (NLP). They may store sets of words, with or without annotations
such as the corresponding pronunciation, base form, or morphological categories. The
main reasons for using finite-state automata in the NLP domain are that their repre-
sentation of the set of words is compact, and that looking up a string in a dictionary
represented by a finite-state automaton is very fast—proportional to the length of the
string. Of particular interest to the NLP community are deterministic, acyclic, finite-
state automata, which we call dictionaries.

Dictionaries can be constructed in various ways—see Watson (1993a, 1995) for a
taxonomy of (general) finite-state automata construction algorithms. A word is simply
a finite sequence of symbols over some alphabet and we do not associate it with
a meaning in this paper. A necessary and sufficient condition for any deterministic
automaton to be acyclic is that it recognizes a finite set of words. The algorithms
described here construct automata from such finite sets.

The Myhill-Nerode theorem (see Hopcroft and Ullman [1979]) states that among
the many deterministic automata that accept a given language, there is a unique au-
tomaton (excluding isomorphisms) that has a minimal number of states. This is called
the minimal deterministic automaton of the language.

The generalized algorithm presented in this paper has been independently devel-
oped by Jan Daciuk of the Technical University of Gdańsk, and by Richard Watson

� Department of Applied Informatics, Technical University of Gdańsk, Ul. G. Narutowicza 11/12,
PL80-952 Gdańsk, Poland. E-mail: jandac@pg.gda.pl

y Linguistic Modelling Laboratory, LPDP—Bulgarian Academy of Sciences, Bulgaria. E-mail:
stoyan@lml.bas.bg

z Department of Computer Science, University of Pretoria, Pretoria 0002, South Africa. E-mail:
watson@cs.up.ac.za

x E-mail: watson@OpenFIRE.org

c 2000 Association for Computational Linguistics

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Computational Linguistics Volume 26, Number 1

and Bruce Watson (then of the IST Technologies Research Group) at Ribbit Software
Systems Inc. The specialized (to sorted input data) algorithm was independently de-
veloped by Jan Daciuk and by Stoyan Mihov of the Bulgarian Academy of Sciences.
Jan Daciuk has made his C++ implementations of the algorithms freely available
for research purposes at www.pg.gda.pl/�jandac/fsa.html.1 Stoyan Mihov has imple-
mented the (sorted input) algorithm in a Java package for minimal acyclic finite-state
automata. This package forms the foundation of the Grammatical Web Server for Bul-
garian (at origin2000.bas.bg) and implements operations on acyclic finite automata,
such as union, intersection, and difference, as well as constructions for perfect hash-
ing. Commercial C++ and Java implementations are available via www.OpenFIRE.org.
The commercial implementations include several additional features such as a method
to remove words from the dictionary (while maintaining minimality). The algorithms
have been used for constructing dictionaries and transducers for spell-checking, mor-
phological analysis, two-level morphology, restoration of diacritics, perfect hashing,
and document indexing. The algorithms have also proven useful in numerous prob-
lems outside the field of NLP, such as DNA sequence matching and computer virus
recognition.

An earlier version of this paper, authored by Daciuk, Watson, and Watson, ap-
peared at the International Workshop on Finite-state Methods in Natural Language
Processing in 1998—see Daciuk, Watson, and Watson (1998).

2. Mathematical Preliminaries

We define a deterministic finite-state automaton to be a 5-tuple M = (Q,�, �, q0, F),
where Q is a finite set of states, q0 2 Q is the start state, F � Q is a set of final states, �
is a finite set of symbols called the alphabet, and � is a partial mapping �: Q� � �! Q
denoting transitions. When �(q, a) is undefined, we write �(q, a) = ?. We can extend
the � mapping to partial mapping ��: Q� �� �! Q as follows (where a 2 �, x 2 ��):

�
�(q, ") = q

�
�(q, ax) =

�
��(�(q, a), x) if �(q, a) 6= ?
? otherwise

Let DAFSA be the set of all deterministic finite-state automata in which the transition
function � is acyclic—there is no string w and state q such that ��(q, w) = q.

We define L(M) to be the language accepted by automaton M:

L(M) = f x 2 �� j ��(q0, x) 2 F g

The size of the automaton, jMj, is equal to the number of states, jQj. P(��) is the set

of all languages over �. Define the function
!

L: Q �! P(��) to map a state q to the
set of all strings on a path from q to any final state in M. More precisely,

!

L (q) = f x 2 �� j ��(q, x) 2 F g

!

L (q) is called the right language of q. Note that L(M) =
!

L (q0). The right language of

1 The algorithms in Daciuk’s implementation differ slightly from those presented here, as he uses
automata with final transitions, not final states. Such automata have fewer states and fewer transitions
than traditional ones.

4

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Daciuk, Mihov, Watson, and Watson Incremental Construction of FSAs

a state can also be defined recursively:

!

L (q) = f a
!

L (�(q, a)) j a 2 � ^ �(q, a) 6= ?g [

�
f"g if q 2 F
; otherwise

One may ask whether such a recursive definition has a unique solution. Most texts on
language theory, for example Moll, Arbib, and Kfoury (1988), show that the solution
is indeed unique—it is the least fixed-point of the equation.

We also define a property of an automaton specifying that all states can be reached
from the start state:

Reachable(M) � 8q2Q9x2��(��(q0, x) = q)

The property of being a minimal automaton is traditionally defined as follows (see
Watson [1993b, 1995]):

Min(M) � 8M02DAFSA(L(M) = L(M0)) jMj � jM0j)

We will, however, use an alternative definition of minimality, which is shown to be
equivalent:

Minimal(M) � (8q,q02Q(q 6= q0)
!

L (q) 6=
!

L (q0))) ^ Reachable(M)

A general treatment of automata minimization can be found in Watson (1995). A formal
proof of the correctness of the following algorithm can be found in Mihov (1998).

3. Construction from Sorted Data

A trie is a dictionary with a tree-structured transition graph in which the start state
is the root and all leaves are final states.2 An example of a dictionary in a form of a
trie is given in Figure 1. We can see that many subtrees in the transition graph are
isomorphic. The equivalent minimal dictionary (Figure 2) is the one in which only
one copy of each isomorphic subtree is kept. This means that, pointers (edges) to
all isomorphic subtrees are replaced by pointers (edges) to their unique representa-
tive.

The traditional method of obtaining a minimal dictionary is to first create a (not
necessarily minimal) dictionary for the language and then minimize it using any one
of a number of algorithms (again, see Watson [1993b, 1995] for numerous examples of
such algorithms). The first stage is usually done by building a trie, for which there are
fast and well-understood algorithms. Dictionary minimization algorithms are quite ef-
ficient in terms of the size of their input dictionary—for some algorithms, the memory
and time requirements are both linear in the number of states. Unfortunately, even such
good performance is not sufficient in practice, where the intermediate dictionary (the
trie) can be much larger than the available physical memory. (Some effort towards
decreasing the memory requirement has been made; see Revuz [1991].) This paper
presents a way to reduce these intermediate memory requirements and decrease the

2 There may also be nonleaf, in other words interior, states that are final.

5

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Computational Linguistics Volume 26, Number 1

ta

is
s
n

i

t

tn
e

t
s

é
è

â

s
e

n
t

e

z

n

s

s e

s

e

r

e

n

t

e

s

m
e

s

n
s

o

e

o

n

z
i

sz

n

e
z

r

o i

t s
s

n
z

e

a
s

i

t s
n

t

e

o

on
s

t
Figure 1
A trie whose language is the French regular endings of verbs of the first group.

s
e

r

m
t

o

e

a

e

r

s

tn
e

i

i

i

e

è
â

é

o
a

s s

n

n

e

n

i

s

ie
e

o
n

e

e

s

t

s

t

s

n

s t

s
z

z

s

Figure 2
The unique minimal dictionary whose language is the French regular endings of verbs of the
first group.

total construction time by constructing the minimal dictionary incrementally (word by
word, maintaining an invariant of minimality), thus avoiding ever having the entire
trie in memory.

6

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Daciuk, Mihov, Watson, and Watson Incremental Construction of FSAs

The central part of most automata minimization algorithms is a classification
of states. The states of the input dictionary are partitioned such that the equiva-
lence classes correspond to the states of the equivalent minimal automaton. Assum-
ing the input dictionary has only reachable states (that is, Reachable is true), we can
deduce (by our alternative definition of minimality) that each state in the minimal
dictionary must have a unique right language. Since this is a necessary and suffi-
cient condition for minimality, we can use equality of right languages as the equiv-
alence relation for our classes. Using our definition of right languages, it is easily
shown that equality of right languages is an equivalence relation (it is reflexive,
symmetric, and transitive). We will denote two states, p and q, belonging to the
same equivalence class by p � q (note that � here is different from its use for log-
ical equivalence of predicates). In the literature, this relation is sometimes written
as E.

To aid in understanding, let us traverse the trie (see Figure 1) with the postorder
method and see how the partitioning can be performed. For each state we encounter,
we must check whether there is an equivalent state in the part of the dictionary that
has already been analyzed. If so, we replace the current state with the equivalent
state. If not, we put the state into a register, so that we can find it easily. It follows
that the register has the following property: it contains only states that are pairwise
inequivalent. We start with the (lexicographically) first leaf, moving backward through
the trie toward the start state. All states up to the first forward-branching state (state
with more than one outgoing transition) must belong to different classes and we im-
mediately place them in the register, since there will be no need to replace them by
other states. Considering the other branches, and starting from their leaves, we need to
know whether or not a given state belongs to the same class as a previously registered
state. For a given state p (not in the register), we try to find a state q in the register
that would have the same right language. To do this, we do not need to compare the
languages themselves—comparing sets of strings is computationally expensive. We
can use our recursive definition of the right language. State p belongs to the same
class as q if and only if:

1. they are either both final or both nonfinal; and

2. they have the same number of outgoing transitions; and

3. corresponding outgoing transitions have the same labels; and

4. corresponding outgoing transitions lead to states that have the same
right languages.

Because the postorder method ensures that all states reachable from the states al-
ready visited are unique representatives of their classes (i.e., their right languages
are unique in the visited part of the automaton), we can rewrite the last condition
as:

4’. corresponding transitions lead to the same states.

If all the conditions are satisfied, the state p is replaced by q. Replacing p simply in-
volves deleting it while redirecting all of its incoming transitions to q. Note that all

7

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Computational Linguistics Volume 26, Number 1

leaf states belong to the same equivalence class. If some of the conditions are not sat-
isfied, p must be a representative of a new class and therefore must be put into the
register.

To build the dictionary one word at a time, we need to merge the process of
adding new words to the dictionary with the minimization process. There are two
crucial questions that must be answered. First, which states (or equivalence classes)
are subject to change when new words are added? Second, is there a way to add new
words to the dictionary such that we minimize the number of states that may need to
be changed during the addition of a word? Looking at Figures 1 and 2, we can repro-
duce the same postorder traversal of states when the input data is lexicographically
sorted. (Note that in order to do this, the alphabet � must be ordered, as is the case
with ASCII and Unicode). To process a state, we need to know its right language. Ac-
cording to the method presented above, we must have the whole subtree whose root
is that state. The subtree represents endings of subsequent (ordered) words. Further
investigation reveals that when we add words in this order, only the states that need
to be traversed to accept the previous word added to the dictionary may change when
a new word is added. The rest of the dictionary remains unchanged, because a new
word either

� begins with a symbol different from the first symbols of all words
already in the automaton; the beginning symbol of the new word is
lexicographically placed after those symbols; or

� it shares some (or even all) initial symbols of the word previously added
to the dictionary; the algorithm then creates a forward branch, as the
symbol on the label of the transition must be later in the alphabet than
symbols on all other transitions leaving that state.

When the previous word is a prefix of the new word, the only state that is to be
modified is the last state belonging to the previous word. The new word may share
its ending with other words already in the dictionary, which means that we need to
create links to some parts of the dictionary. Those parts, however, are not modified.
This discovery leads us to Algorithm 1, shown below.

Algorithm 1.

Register := ;;
do there is another word !

Word := next word in lexicographic order;
CommonPrefix := common prefix(Word);
LastState := ��(q0, CommonPrefix);
CurrentSuffix := Word[length(CommonPrefix)+1: : : length(Word)];
if has children(LastState) !

replace or register(LastState)
fi;
add suffix(LastState, CurrentSuffix)

od;
replace or register(q0)

8

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Daciuk, Mihov, Watson, and Watson Incremental Construction of FSAs

func common prefix(Word) !
return the longest prefix w of Word such that ��(q0, w) 6= ?

cnuf

func replace or register(State) !
Child := last child(State);
if has children(Child) !

replace or register(Child)
fi;
if 9q2Q(q 2 Register ^ q � Child)!

last child(State) := q: (q 2 Register ^ q � Child);
delete(Child)

else
Register := Register [fChildg

fi
cnuf

The main loop of the algorithm reads subsequent words and establishes which
part of the word is already in the automaton (the CommonPrefix), and which is not
(the CurrentSuffix). An important step is determining what the last state (here called
LastState) in the path of the common prefix is. If LastState already has children, it
means that not all states in the path of the previously added word are in the path of
the common prefix. In that case, by calling the function replace or register, we can let
the minimization process work on those states in the path of the previously added
word that are not in the common prefix path. Then we can add to the LastState a chain
of states that would recognize the CurrentSuffix.

The function common prefix finds the longest prefix (of the word to be added)
that is a prefix of a word already in the automaton. The prefix can be empty (since
��(q, ") = q).

The function add suffix creates a branch extending out of the dictionary, which
represents the suffix of the word being added (the maximal suffix of the word which
is not a prefix of any other word already in the dictionary). The last state of this branch
is marked as final.

The function last child returns a reference to the state reached by the lexicographi-
cally last transition that is outgoing from the argument state. Since the input data is lex-
icographically sorted, last child returns the outgoing transition (from the state) most re-
cently added (during the addition of the previous word). The function replace or register
effectively works on the last child of the argument state. It is called with the argu-
ment that is the last state in the common prefix path (or the initial state in the last
call). We need the argument state to modify its transition in those instances in which
the child is to be replaced with another (equivalent) state. Firstly, the function calls
itself recursively until it reaches the end of the path of the previously added word.
Note that when it encounters a state with more than one child, it takes the last one,
as it belongs to the previously added word. As the length of words is limited, so is
the depth of recursion. Then, returning from each recursive call, it checks whether a
state equivalent to the current state can be found in the register. If this is true, then
the state is replaced with the equivalent state found in the register. If not, the state is
registered as a representative of a new class. Note that the function replace or register
processes only the states belonging to the path of the previously added word (a part,
or possibly all, of those created with the previous call to add suffix), and that those

9

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Computational Linguistics Volume 26, Number 1

states are never reprocessed. Finally, has children returns true if, and only if, there are
outgoing transitions from the state.

During the construction, the automaton states are either in the register or on the
path for the last added word. All the states in the register are states in the resulting
minimal automaton. Hence the temporary automaton built during the construction
has fewer states than the resulting automaton plus the length of the longest word.
Memory is needed for the minimized dictionary that is under construction, the call
stack, and for the register of states. The memory for the dictionary is proportional
to the number of states and the total number of transitions. The memory for the
register of states is proportional to the number of states and can be freed once con-
struction is complete. By choosing an appropriate implementation method, one can
achieve a memory complexity O(n) for a given alphabet, where n is the number
of states of the minimized automaton. This is an important advantage of our algo-
rithm.

For each letter from the input list, the algorithm must either make a step in the
function common prefix or add a state in the procedure add sufix. Both operations can
be performed in constant time. Each new state that has been added in the procedure
add sufix has to be processed exactly once in the procedure replace or register. The num-
ber of states that have to be replaced or registered is clearly smaller than the number
of letters in the input list.3 The processing of one state in the procedure consists of
one register search and possibly one register insertion. The time complexity of the
search is O(log n),where n is the number of states in the (minimized) dictionary. The
time complexity of adding a state to the register is also O(log n). In practice, however,
by using a hash table to represent the register (and equivalence relation), the average
time complexity of those operations can be made almost constant. Hence the time
complexity of the whole algorithm is O(l log n), where l is the total number of letters
in the input list.

4. Construction from Unsorted Data

Sometimes it is difficult or even impossible to sort the input data before constructing
a dictionary. For example, there may be insufficient time or storage space to sort the
data or the data may originate in another program or physical source. An incremental
dictionary-building algorithm would still be very useful in those situations, although
unsorted data makes it more difficult to merge the trie-building and the minimization
processes. We could leave the two processes disjoint, although this would lead to
the traditional method of constructing a trie and minimizing it afterwards. A better
solution is to minimize everything on-the-fly, possibly changing the equivalence classes
of some states each time a word is added. Before actually constructing a new state
in the dictionary, we first determine if it would be included in the equivalence class
of a preexisting state. Similarly, we may need to change the equivalence classes of
previously constructed states since their right languages may have changed. This leads
to an incremental construction algorithm. Naturally, we would want to create the states
for a new word in an order that would minimize the creation of new equivalence
classes.

As in the algorithm for sorted data, when a new word w is added, we search
for the prefix of w already in the dictionary. This time, however, we cannot assume

3 The exact number of the states that are processed in the procedure replace or register is equal to the
number of states in the trie for the input language.

10

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Daciuk, Mihov, Watson, and Watson Incremental Construction of FSAs

a

b
d

b

a
1

2

3

4

5

a

b
d

b

a e
1

2

3 5

4

a

b

b

a

d

d

e

1

2 3

4

5

6

Figure 3
The result of blindly adding the word bae to a minimized dictionary (appearing on the left)
containing abd and bad. The rightmost dictionary inadvertently contains abe as well. The lower
dictionary is correct—state 3 had to be cloned.

that the states traversed by this common prefix will not be changed by the addition
of the word. If there are any preexisting states traversed by the common prefix that
are already targets of more than one in-transition (known as confluence states), then
blindly appending another transition to the last state in this path (as we would in the
sorted algorithm) would accidentally add more words than desired (see Figure 3 for
an example of this).

To avoid generation of such spurious words, all states in the common prefix path
from the first confluence state must be cloned. Cloning is the process of creating a new
state that has outgoing transitions on the same labels and to the same destination states
as a given state. If we compare the minimal dictionary (Figure 1) to an equivalent trie
(Figure 2), we notice that a confluence state can be seen as a root of several original,
isomorphic subtrees merged into one (as described in the previous section). One of
the isomorphic subtrees now needs to be modified (leaving it no longer isomorphic),
so it must first be separated from the others by cloning of its root. The isomorphic
subtrees hanging off these roots are unchanged, so the original root and its clone have
the same outgoing transitions (that is, transitions on the same labels and to the same
destination states).

In Algorithm 1, the confluence states were never traversed during the search for
the common prefix. The common prefix was not only the longest common prefix of the
word to be added and all the words already in the automaton, it was also the longest
common prefix of the word to be added and the last (i.e., the previous) word added to
the automaton. As it was the function replace or register that created confluence states,
and that function was never called on states belonging to the path of the last word
added to the automaton, those states could never be found in the common prefix
path.

Once the entire common prefix is traversed, the rest of the word must be appended.
If there are no confluence states in the common prefix, then the method of adding the
rest of the word does not differ from the method used in the algorithm for sorted
data. However, we need to withdraw (from the register) the last state in the common
prefix path in order not to create cycles. This is in contrast to the situation in the
algorithm for sorted data where that state is not yet registered. Also, CurrentSuffix
could be matched with a path in the automaton containing states from the common
prefix path (including the last state of the prefix).

11

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Computational Linguistics Volume 26, Number 1

a
b

c
d e

f
g

h

g

1

2 3

4 5 6

7 8
9

e

a
b

e
f

g
g

1

2 3

5 6

7 8
9

c
d4

10h
d

e

Figure 4
Consider an automaton (shown in solid lines on the left-hand figure) accepting abcde and
fghde. Suppose we want to add fghdghde. As the common prefix path (shown in thicker lines)
contains a confluence state, we clone state 5 to obtain state 9, add the suffix to state 9, and
minimize it. When we also consider the dashed lines in the left-hand figure, we see that state
8 became a new confluence state earlier in the common prefix path. The right-hand figure
shows what could happen if we did not rescan the common prefix path for confluence states.
State 10 is a clone of state 4.

When there is a confluence state, then we need to clone some states. We start with
the last state in the common prefix path, append the rest of the word to that clone and
minimize it. Note that in this algorithm, we do not wait for the next word to come, so
we can minimize (replace or register the states of) CurrentSuffix state by state as they
are created. Adding and minimizing the rest of the word may create new confluence
states earlier in the common prefix path, so we need to rescan the common prefix path
in order not to create cycles, as illustrated in Figure 4. Then we proceed with cloning
and minimizing the states on the path from the state immediately preceding the last
state to the current first confluence state.

Another, less complicated but also less economical, method can be used to avoid
the problem of creating cycles in the presence of confluence states. In that solution, we
proceed from the state immediately preceding the confluence state towards the end of
the common prefix path, cloning the states on the way. But first, the state immediately
preceding the first confluence state should be removed from the register. At the end
of the common prefix path, we add the suffix. Then, we call replace or register with the
predecessor of the state immediately preceding the first confluence state. The following
should be noted about this solution:

� memory requirements are higher, as we keep more than one isomorphic
state at a time,

� the function replace or register must remain recursive (as in the sorted
version), and

� the argument to replace or register must be a string, not a symbol, in
order to pass subsequent symbols to children.

When the process of traversing the common prefix (up to a confluence state) and
adding the suffix is complete, further modifications follow. We must recalculate the
equivalence class of each state on the path of the new word. If any equivalence class
changes, we must also recalculate the equivalence classes of all of the parents of all
of the states in the changed class. Interestingly, this process could actually make the
new dictionary smaller. For example, if we add the word abe to the dictionary at the
bottom of Figure 3 while maintaining minimality, we obtain the dictionary shown in

12

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Daciuk, Mihov, Watson, and Watson Incremental Construction of FSAs

the right of Figure 3, which is one state smaller. The resulting algorithm is shown in
Algorithm 2.

Algorithm 2.

Register := ;;
do there is another word !

Word := next word;
CommonPrefix := common prefix(Word);
CurrentSuffix := Word[length(CommonPrefix) + 1 : : : length(Word)];
if CurrentSuffix = " ^ ��(q0, CommonPrefix) 2 F !

continue
fi;
FirstState := first state(CommonPrefix);
if FirstState = ; !

LastState := ��(q0, CommonPrefix)
else

LastState := clone(��(q0, CommonPrefix))
fi;
add suffix(LastState, CurrentSuffix);
if FirstState 6= ; !

FirstState := first state(CommonPrefix);
CurrentIndex := (length(x): ��(q0, x) = FirstState);
for i from length(CommonPrefix) � 1 downto CurrentIndex !

CurrentState := clone(��(q0, CommonPrefix[1: : : i]));
�(CurrentState, CommonPrefix[i]) := LastState;
replace or register(CurrentState);
LastState := CurrentState

rof
else

CurrentIndex := length(CommonPrefix)
fi;
Changed := true;
do Changed !

CurrentIndex := CurrentIndex � 1;
CurrentState := ��(q0, Word[1: : :CurrentIndex]);
OldState := LastState;
if CurrentIndex > 0 !

Register := Register � fLastStateg
fi;
replace or register(CurrentState);
Changed := OldState 6= LastState

od
if :Changed ^ CurrentIndex > 0 !

Register := Register [fCurrentStateg
fi

od

func replace or register(State, Symbol) !
Child := �(State, Symbol);
if 9q 2 Q(q 2 Register ^ q � Child)!

13

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Computational Linguistics Volume 26, Number 1

delete(Child);
last child(State) := q: (q 2 Register ^ q � Child)

else
Register := Register [fChildg

fi
cnuf

The main loop reads the words, finds the common prefix, and tries to find the
first confluence state in the common prefix path. Then the remaining part of the word
(CurrentSuffix) is added.

If a confluence state is found (i.e., FirstState points to a state in the automaton), all
states from the first confluence state to the end of the common prefix path are cloned,
and then considered for replacement or registering. Note that the inner loop (with i as
the control variable) begins with the penultimate state in the common prefix, because
the last state has already been cloned and the function replace or register acts on a child
of its argument state.

Addition of a new suffix to the last state in the common prefix changes the right
languages of all states that precede that state in the common prefix path. The last part
of the main loop deals with that situation. If the change resulted in such modification
of the right language of a state that an equivalent state can be found somewhere else
in the automaton, then the state is replaced with the equivalent one and the change
propagates towards the initial state. If the replacement of a given state cannot take
place, then (according to our recursive definition of the right language) there is no
need to replace any preceding state.

Several changes to the functions used in the sorted algorithm are necessary to
handle the general case of unsorted data. The replace or register procedure needs to be
modified slightly. Since new words are added in arbitrary order, one can no longer
assume that the last child (lexicographically) of the state (the one that has been added
most recently) is the child whose equivalence class may have changed. However, we
know the label on the transition leading to the altered child, so we use it to access that
state. Also, we do not need to call the function recursively. We assume that add suffix
replaces or registers the states in the CurrentSuffix in the correct order; later we process
one path of states in the automaton, starting from those most distant from the initial
state, proceeding towards the initial state q0. So in every situation in which we call
replace or register, all children of the state Child are already unique representatives of
their equivalence classes.

Also, in the sorted algorithm, add suffix is never passed " as an argument, whereas
this may occur in the unsorted version of the algorithm. The effect is that the LastState
should be marked as final since the common prefix is, in fact, the entire word. In the
sorted algorithm, the chain of states created by add suffix was left for further treatment
until new words are added (or until the end of processing). Here, the automaton is
completely minimized on-the-fly after adding a new word, and the function add suffix
can call replace or register for each state it creates (starting from the end of the suffix).
Finally, the new function first state simply traverses the dictionary using the given
word prefix and returns the first confluence state it encounters. If no such state exists,
first state returns ;.

As in the sorted case, the main loop of the unsorted algorithm executes m times,
where m is the number of words accepted by the dictionary. The inner loops are exe-
cuted at most jwj times for each word. Putting a state into the register takes O(log n),
although it may be constant when using a hash table. The same estimation is valid

14

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Daciuk, Mihov, Watson, and Watson Incremental Construction of FSAs

for a removal from the register. In this case, the time complexity of the algorithm
remains the same, but the constant changes. Similarly, hashing can be used to pro-
vide an efficient method of determining the state equivalence classes. For sorted data,
only a single path through the dictionary could possibly be changed each time a
new word is added. For unsorted data, however, the changes frequently fan out and
percolate all the way back to the start state, so processing each word takes more
time.

4.1 Extending the Algorithms
These new algorithms can also be used to construct transducers. The alphabet of the
(transducing) automaton would be �1 � �2, where �1 and �2 are the alphabet of
the levels. Alternatively, elements of ��2 can be associated with the final states of the
dictionary and only output once a valid word from ��1 is recognized.

5. Related Work

An algorithm described by Revuz [1991] also constructs a dictionary from sorted data
while performing a partial minimization on-the-fly. Data is sorted in reverse order
and that property is used to compress the endings of words within the dictionary as
it is being built. This is called a pseudominimization and must be supplemented by
a true minimization phase afterwards. The minimization phase still involves finding
an equivalence relation over all of the states of the pseudominimal dictionary. It is
possible to use unsorted data but it produces a much bigger dictionary in the first
stage of processing. However, the time complexity of the minimization can be reduced
somewhat by using knowledge of the pseudominimization process. Although this
pseudominimization technique is more economic in its use of memory than traditional
techniques, we are still left with a subminimal dictionary that can be a factor of 8 times
larger than the equivalent minimal dictionary (Revuz [1991, page 33], reporting on the
DELAF dictionary).

Recently, a semi-incremental algorithm was described by Watson (1998) at the
Workshop on Implementing Automata. That algorithm requires the words to be sorted
in any order of decreasing length (this sorting process can be done in linear time),
and takes advantage of automata properties similar to those presented in this paper.
In addition, the algorithm requires a final minimization phase after all words have
been added. For this reason, it is only semi-incremental and does not maintain full
minimality while adding words—although it usually maintains the automata close
enough to minimality for practical applications.

6. Conclusions

We have presented two new methods for incrementally constructing a minimal, deter-
ministic, acyclic finite-state automaton from a finite set of words (possibly with corre-
sponding annotations). Their main advantage is their minimal intermediate memory
requirements.4 The total construction time of these minimal dictionaries is dramati-
cally reduced from previous algorithms. The algorithm constructing a dictionary from
sorted data can be used in parallel with other algorithms that traverse or utilize the
dictionary, since parts of the dictionary that are already constructed are no longer
subject to future change.

4 It is minimal in asymptotic terms; naturally compact data structures can also be used.

15

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

Computational Linguistics Volume 26, Number 1

Acknowledgments
Jan Daciuk would like to express his
gratitude to the Swiss Federal Scholarship
Commission for providing a scholarship
that made possible the work described here.
Jan would also like to thank friends from
ISSCO, Geneva, for their comments and
suggestions on early versions of the
algorithms given in this paper.

Bruce Watson and Richard Watson
would like to thank Ribbit Software
Systems Inc. for its continued support in
these fields of applicable research.

All authors would like to thank the
anonymous reviewers and Nanette Saes for
their valuable comments and suggestions
that led to significant improvements in the
paper.

References
Daciuk, Jan, Bruce W. Watson, and

Richard E. Watson. 1998. Incremental
construction of minimal acyclic finite state
automata and transducers. In Proceedings
of the International Workshop on Finite State
Methods in Natural Language Processing,
pages 48–56, Ankara, Turkey, 30 June–1
July.

Hopcroft, John E. and Jeffrey D. Ullman.
1979. Introduction to Automata Theory,
Languages, and Computation.
Addison-Wesley, Reading, MA.

Mihov, Stoyan. 1998. Direct building of
minimal automaton for given list. In
Annuaire de l’Université de Sofia “St. Kl.

Ohridski”, volume 91, book 1, pages 38–40.
Faculté de Mathematique et Informatique,
Sofia, Bulgaria, livre 1 edition, February.
Available at http://lml.bas.bg/�stoyan/
publications.html.

Moll, Robert N., Michael A. Arbib, and A. J.
Kfoury. 1988. Introduction to Formal
Language Theory. Springer Verlag, New
York, NY.

Revuz, Dominique. 1991. Dictionnaires et
lexiques: méthodes et algorithmes. Ph.D.
thesis, Institut Blaise Pascal, Paris, France.
LITP 91.44.

Watson, Bruce W. 1993a. A taxonomy of
finite automata construction algorithms.
Computing Science Note 93/43,
Eindhoven University of Technology, The
Netherlands. Available at
www.OpenFIRE.org.

Watson, Bruce W. 1993b. A taxonomy of
finite automata minimization algorithms.
Computing Science Note 93/44,
Eindhoven University of Technology, The
Netherlands. Available at
www.OpenFIRE.org.

Watson, Bruce W. 1995. Taxonomies and
Toolkits of Regular Language Algorithms.
Ph.D. thesis, Eindhoven University of
Technology, the Netherlands. Available at
www.OpenFIRE.org.

Watson, Bruce W. 1998. A fast new
semi-incremental algorithm for
construction of minimal acyclic DFAs. In
Proceedings of the Third International
Workshop on Implementing Automata, pages
121–32, Rouen, France, 17–19 September.

16

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601 by guest on 28 March 2024

