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Abstract

Transformer-based models have pushed state
of the art in many areas of NLP, but our under-
standing of what is behind their success is still
limited. This paper is the first survey of over
150 studies of the popular BERT model. We
review the current state of knowledge about
how BERT works, what kind of information
it learns and how it is represented, common
modifications to its training objectives and
architecture, the overparameterization issue,
and approaches to compression. We then
outline directions for future research.

1 Introduction

Since their introduction in 2017, Transformers
(Vaswani et al., 2017) have taken NLP by storm,
offering enhanced parallelization and better mod-
eling of long-range dependencies. The best known
Transformer-based model is BERT (Devlin et al.,
2019); it obtained state-of-the-art results in nume-
rous benchmarks and is still a must-have baseline.

Although it is clear that BERT works remark-
ably well, it is less clear why, which limits further
hypothesis-driven improvement of the architec-
ture. Unlike CNNs, the Transformers have little
cognitive motivation, and the size of these models
limits our ability to experiment with pre-training
and perform ablation studies. This explains a large
number of studies over the past year that at-
tempted to understand the reasons behind BERT’s
performance.

In this paper, we provide an overview of what
has been learned to date, highlighting the questions
that are still unresolved. We first consider the
linguistic aspects of it, namely, the current evi-
dence regarding the types of linguistic and world
knowledge learned by BERT, as well as where and
how this knowledge may be stored in the model.
We then turn to the technical aspects of the model
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and provide an overview of the current proposals
to improve BERT’s architecture, pre-training, and
fine-tuning. We conclude by discussing the issue
of overparameterization, the approaches to com-
pressing BERT, and the nascent area of pruning
as a model analysis technique.

2 Overview of BERT Architecture

Fundamentally, BERT is a stack of Transformer
encoder layers (Vaswani et al., 2017) that consist
of multiple self-attention ‘‘heads’’. For every in-
put token in a sequence, each head computes key,
value, and query vectors, used to create a weighted
representation. The outputs of all heads in the
same layer are combined and run through a fully
connected layer. Each layer is wrapped with a skip
connection and followed by layer normalization.

The conventional workflow for BERT consists
of two stages: pre-training and fine-tuning. Pre-
training uses two self-supervised tasks: masked
language modeling (MLM, prediction of randomly
masked input tokens) and next sentence predic-
tion (NSP, predicting if two input sentences are
adjacent to each other). In fine-tuning for down-
stream applications, one or more fully connected
layers are typically added on top of the final
encoder layer.

The input representations are computed as
follows: Each word in the input is first tokenized
into wordpieces (Wu et al., 2016), and then three
embedding layers (token, position, and segment)
are combined to obtain a fixed-length vector.
Special token [CLS] is used for classification
predictions, and [ SEP] separates input segments.

Google! and HuggingFace (Wolf et al., 2020)
provide many variants of BERT, including the
original ‘‘base’’ and ‘‘large’” versions. They vary
in the number of heads, layers, and hidden state
size.

"https://github.com/google-research/bert.
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3 What Knowledge Does BERT Have?

A number of studies have looked at the know-
ledge encoded in BERT weights. The popular ap-
proaches include fill-in-the-gap probes of MLM,
analysis of self-attention weights, and probing
classifiers with different BERT representations as
inputs.

3.1 Syntactic Knowledge

Lin et al. (2019) showed that BERT representa-
tions are hierarchical rather than linear, that is,
there is something akin to syntactic tree structure
in addition to the word order information. Tenney
et al. (2019b) and Liu et al. (2019a) also showed
that BERT embeddings encode information
about parts of speech, syntactic chunks, and
roles. Enough syntactic information seems to be
captured in the token embeddings themselves to
recover syntactic trees (Vilares et al., 2020; Kim
et al., 2020; Rosa and Marecek, 2019), although
probing classifiers could not recover the labels
of distant parent nodes in the syntactic tree (Liu
etal.,2019a). Warstadt and Bowman (2020) report
evidence of hierarchical structure in three out of
four probing tasks.

As far as how syntax is represented, it seems
that syntactic structure is not directly encoded
in self-attention weights. Htut et al. (2019) were
unable to extract full parse trees from BERT
heads even with the gold annotations for the root.
Jawahar et al. (2019) include a brief illustration of
a dependency tree extracted directly from self-
attention weights, but provide no quantitative
evaluation.

However, syntactic information can be recov-
ered from BERT token representations. Hewitt
and Manning (2019) were able to learn transforma-
tion matrices that successfully recovered syntactic
dependencies in PennTreebank data from BERT’s
token embeddings (see also Manning et al., 2020).
Jawahar et al. (2019) experimented with transfor-
mations of the [CLS] token using Tensor Product
Decomposition Networks (McCoy et al., 2019a),
concluding that dependency trees are the best
match among five decomposition schemes (although
the reported MSE differences are very small).
Miaschi and Dell’ Orletta (2020) perform a range
of syntactic probing experiments with concate-
nated token representations as input.

Note that all these approaches look for the
evidence of gold-standard linguistic structures,
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Figure 1: Parameter-free probe for syntactic know-
ledge: words sharing syntactic subtrees have larger
impact on each other in the MLM prediction (Wu et al.,
2020).

and add some amount of extra knowledge to the
probe. Most recently, Wu et al. (2020) proposed a
parameter-free approach based on measuring the
impact that one word has on predicting another
word within a sequence in the MLLM task (Figure 1).
They concluded that BERT ¢‘naturally’’ learns
some syntactic information, although it is not
very similar to linguistic annotated resources.

The fill-in-the-gap probes of MLM showed
that BERT takes subject-predicate agreement
into account when performing the cloze task
(Goldberg, 2019; van Schijndel et al., 2019),
even for meaningless sentences and sentences
with distractor clauses between the subject and
the verb (Goldberg, 2019). A study of negative
polarity items (NPIs) by Warstadt et al. (2019)
showed that BERT is better able to detect the
presence of NPIs (e.g., ‘‘ever’’) and the words
that allow their use (e.g., ‘‘whether’’) than
scope violations.

The above claims of syntactic knowledge are
belied by the evidence that BERT does not
‘“‘understand’’ negation and is insensitive to
malformed input. In particular, its predictions
were not altered? even with shuffled word order,

2See also the recent findings on adversarial triggers, which
get the model to produce a certain output even though they



truncated sentences, removed subjects and objects
(Ettinger, 2019). This could mean that either
BERT’s syntactic knowledge is incomplete, or
it does not need to rely on it for solving its
tasks. The latter seems more likely, since Glavas
and Vuli¢ (2020) report that an intermediate
fine-tuning step with supervised parsing does
not make much difference for downstream task
performance.

3.2 Semantic Knowledge

To date, more studies have been devoted to
BERT’s knowledge of syntactic rather than se-
mantic phenomena. However, we do have evi-
dence from an MLM probing study that BERT
has some knowledge of semantic roles (Ettinger,
2019). BERT even displays some preference for
the incorrect fillers for semantic roles that are
semantically related to the correct ones, as op-
posed to those that are unrelated (e.g., “‘to tip a
chef”’ is better than ‘‘to tip a robin’’, but worse
than ‘‘to tip a waiter’’).

Tenney et al. (2019b) showed that BERT en-
codes information about entity types, relations,
semantic roles, and proto-roles, since this infor-
mation can be detected with probing classifiers.

BERT struggles with representations of num-
bers. Addition and number decoding tasks showed
that BERT does not form good representations for
floating point numbers and fails to generalize away
from the training data (Wallace et al., 2019b). A
part of the problem is BERT’s wordpiece tokeniza-
tion, since numbers of similar values can be di-
vided up into substantially different word chunks.

Out-of-the-box BERT is surprisingly brittle
to named entity replacements: For example,
replacing names in the coreference task changes
85% of predictions (Balasubramanian et al., 2020).
This suggests that the model does not actually
form a generic idea of named entities, although
its F1 scores on NER probing tasks are high
(Tenney et al., 2019a). Broscheit (2019) finds that
fine-tuning BERT on Wikipedia entity linking
“‘teaches’’ it additional entity knowledge, which
would suggest that it did not absorb all the
relevant entity information during pre-training on
Wikipedia.

are not well-formed from the point of view of a human reader
(Wallace et al., 2019a).
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Figure 2: BERT world knowledge (Petroni et al., 2019).

3.3 World Knowledge

The bulk of evidence about commonsense know-
ledge captured in BERT comes from practitioners
using it to extract such knowledge. One direct
probing study of BERT reports that BERT strug-
gles with pragmatic inference and role-based
event knowledge (Ettinger, 2019). BERT also
struggles with abstract attributes of objects, as
well as visual and perceptual properties that are
likely to be assumed rather than mentioned (Da
and Kasai, 2019).

The MLM component of BERT is easy to adapt
for knowledge induction by filling in the blanks
(e.g., “‘Cats like to chase [__]""). Petroni et al.
(2019) showed that, for some relation types, va-
nilla BERT is competitive with methods relying
on knowledge bases (Figure 2), and Roberts et al.
(2020) show the same for open-domain QA using
the T5 model (Raffel et al., 2019). Davison et al.
(2019) suggest that it generalizes better to unseen
data. In order to retrieve BERT’s knowledge, we
need good template sentences, and there is work
on their automatic extraction and augmentation
(Bouraoui et al., 2019; Jiang et al., 2019b).

However, BERT cannot reason based on its
world knowledge. Forbes et al. (2019) show that
BERT can ‘‘guess’’ the affordances and properties
of many objects, but cannot reason about the
relationship between properties and affordances.
For example, it ‘‘knows’’ that people can walk
into houses, and that houses are big, but it cannot
infer that houses are bigger than people. Zhou et al.
(2020) and Richardson and Sabharwal (2019) also
show that the performance drops with the number
of necessary inference steps. Some of BERT’s
world knowledge success comes from learning
stereotypical associations (Poerner et al., 2019),
for example, a person with an Italian-sounding
name is predicted to be Italian, even when it is
incorrect.



3.4 Limitations

Multiple probing studies in section 3 and section 4
report that BERT possesses a surprising amount of
syntactic, semantic, and world knowledge. How-
ever, Tenney et al. (2019a) remark, ‘‘the fact that
a linguistic pattern is not observed by our probing
classifier does not guarantee that it is not there, and
the observation of a pattern does not tell us how it
isused.”” There is also the issue of how complex a
probe should be allowed to be (Liu et al., 2019a).
If a more complex probe recovers more infor-
mation, to what extent are we still relying on the
original model?

Furthermore, different probing methods may
lead to complementary or even contradictory con-
clusions, which makes a single test (as in most
studies) insufficient (Warstadt et al., 2019). A
given method might also favor one model over
another, for example, RoBERTa trails BERT with
one tree extraction method, but leads with another
(Htutetal., 2019). The choice of linguistic formal-
ism also matters (Kuznetsov and Gurevych, 2020).

In view of all that, the alternative is to focus
on identifying what BERT actually relies on at
inference time. This direction is currently pursued
both at the level of architecture blocks (to be
discussed in detail in subsection 6.3), and at the
level of information encoded in model weights.
Amnesic probing (Elazar et al., 2020) aims to
specifically remove certain information from the
model and see how it changes performance,
finding, for example, that language modeling does
rely on part-of-speech information.

Another direction is information-theoretic prob-
ing. Pimentel et al. (2020) operationalize probing
as estimating mutual information between the
learned representation and a given linguistic prop-
erty, which highlights that the focus should be
not on the amount of information contained in
a representation, but rather on how easily it can
be extracted from it. Voita and Titov (2020) quan-
tify the amount of effort needed to extract infor-
mation from a given representation as minimum
description length needed to communicate both
the probe size and the amount of data required for
it to do well on a task.

4 Localizing Linguistic Knowledge

4.1 BERT Embeddings

In studies of BERT, the term ‘‘embedding’’ refers
to the output of a Transformer layer (typically,
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the final one). Both conventional static embed-
dings (Mikolov et al., 2013) and BERT-style
embeddings can be viewed in terms of mutual
information maximization (Kong et al., 2019),
but the latter are contextualized. Every token is
represented by a vector dependent on the par-
ticular context of occurrence, and contains at least
some information about that context (Miaschi and
Dell’Orletta, 2020).

Several studies reported that distilled context-
ualized embeddings better encode lexical seman-
tic information (i.e., they are better at traditional
word-level tasks such as word similarity). The
methods to distill a contextualized representation
into static include aggregating the information
across multiple contexts (Akbik et al., 2019;
Bommasani et al., 2020), encoding ‘‘semantically
bleached’” sentences that rely almost exclusively
on the meaning of a given word (e.g., "This is <>")
(May et al., 2019), and even using contextualized
embeddings to train static embeddings (Wang
et al., 2020d).

But this is not to say that there is no room
for improvement. Ethayarajh (2019) measure how
similar the embeddings for identical words are
in every layer, reporting that later BERT layers
produce more context-specific representations.’
They also find that BERT embeddings occupy a
narrow cone in the vector space, and this effect
increases from the earlier to later layers. That is,
two random words will on average have a much
higher cosine similarity than expected if em-
beddings were directionally uniform (isotro-
pic). Because isotropy was shown to be beneficial
for static word embeddings (Mu and Viswanath,
2018), this might be a fruitful direction to explore
for BERT.

Because BERT embeddings are contextualized,
an interesting question is to what extent they
capture phenomena like polysemy and hom-
onymy. There is indeed evidence that BERT’s
contextualized embeddings form distinct clus-
ters corresponding to word senses (Wiedemann
etal., 2019; Schmidt and Hofmann, 2020), making
BERT successful at word sense disambiguation
task. However, Mickus et al. (2019) note that
the representations of the same word depend

3Voita et al. (2019a) look at the evolution of token
embeddings, showing that in the earlier Transformer layers,
MLM forces the acquisition of contextual information at the
expense of the token identity, which gets recreated in later
layers.
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Figure 3: Attention patterns in BERT (Kovaleva et al., 2019).

on the position of the sentence in which it
occurs, likely due to the NSP objective. This is
not desirable from the linguistic point of view, and
could be a promising avenue for future work.

The above discussion concerns token embed-
dings, but BERT is typically used as a sentence
or text encoder. The standard way to generate
sentence or text representations for classification
is to use the [CLS] token, but alternatives are also
being discussed, including concatenation of token
representations (Tanaka et al., 2020), normalized
mean (Tanaka et al., 2020), and layer activations
(Macetal., 2019). See Toshniwal et al. (2020) for a
systematic comparison of several methods across
tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention
head types. Raganato and Tiedemann (2018) dis-
cuss attending to the token itself, previous/next
tokens, and the sentence end. Clark et al. (2019)
distinguish between attending to previous/next
tokens, [CLS], [SEP], punctuation, and ‘‘at-
tending broadly’’ over the sequence. Kovaleva
et al. (2019) propose five patterns, shown in
Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’ attention pattern shown
in Figure 3 could potentially be linguistically
interpretable, and a number of studies focused on
identifying the functions of self-attention heads. In
particular, some BERT heads seem to specialize
in certain types of syntactic relations. Htut
et al. (2019) and Clark et al. (2019) report that
there are BERT heads that attended significantly
more than a random baseline to words in certain
syntactic positions. The datasets and methods
used in these studies differ, but they both find
that there are heads that attend to words in
obj role more than the positional baseline. The
evidence for nsubj, advmod, and amod varies
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between these two studies. The overall conclusion
is also supported by Voita et al.’s (2019b) study
of the base Transformer in machine translation
context. Hoover et al. (2019) hypothesize that even
complex dependencies like dob 7 are encoded by
a combination of heads rather than a single head,
but this work is limited to qualitative analysis.
Zhao and Bethard (2020) looked specifically for
the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)
conclude that no single head has the complete
syntactic tree information, in line with evidence
of partial knowledge of syntax (cf. subsection 3.1).
However, Clark et al. (2019) identify a BERT head
that can be directly used as a classifier to perform
coreference resolution on par with a rule-based
system, which by itself would seem to require
quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention
weights are weak indicators of subject-verb
agreement and reflexive anaphora. Instead of
serving as strong pointers between tokens that
should be related, BERT’s self-attention weights
were close to a uniform attention baseline, but
there was some sensitivity to different types of
distractors coherent with psycholinguistic data.
This is consistent with conclusions by Ettinger
(2019).

To our knowledge, morphological information
in BERT heads has not been addressed, but with
the sparse attention variant by Correia et al.
(2019) in the base Transformer, some attention
heads appear to merge BPE-tokenized words.
For semantic relations, there are reports of self-
attention heads encoding core frame-semantic
relations (Kovaleva et al., 2019), as well as lexi-
cographic and commonsense relations (Cui et al.,
2020).

The overall popularity of self-attention as an
interpretability mechanism is due to the idea that
‘“attention weight has a clear meaning: how much



a particular word will be weighted when comput-
ing the next representation for the current word”’
(Clark et al., 2019). This view is currently debated
(Jain and Wallace, 2019; Serrano and Smith,
2019; Wiegreffe and Pinter, 2019; Brunner et al.,
2020), and in a multilayer model where attention
is followed by nonlinear transformations, the
patterns in individual heads do not provide a full
picture. Also, although many current papers are
accompanied by attention visualizations, and there
is a growing number of visualization tools (Vig,
2019; Hoover et al., 2019), the visualization is
typically limited to qualitative analysis (often with
cherry-picked examples) (Belinkov and Glass,
2019), and should not be interpreted as definitive
evidence.

4.2.2 Attention to Special Tokens

Kovaleva et al. (2019) show that most self-
attention heads do not directly encode any
non-trivial linguistic information, at least when
fine-tuned on GLUE (Wang et al., 2018), since
only fewer than 50% of heads exhibit the
“‘heterogeneous’’ pattern. Much of the model pro-
duced the vertical pattern (attention to [CLS],
[SEP], and punctuation tokens), consistent with
the observations by Clark et al. (2019). This re-
dundancy is likely related to the overparameteri-
zation issue (see section 6).

More recently, Kobayashi et al. (2020) showed
that the norms of attention-weighted input vectors,
which yield a more intuitive interpretation of self-
attention, reduce the attention to special tokens.
However, even when the attention weights are
normed, it is still not the case that most heads
that do the ‘‘heavy lifting’’ are even potentially
interpretable (Prasanna et al., 2020).

One methodological choice in in many studies
of attention is to focus on inter-word attention
and simply exclude special tokens (e.g., Lin et al.
[2019] and Htut et al. [2019]). However, if atten-
tion to special tokens actually matters at inference
time, drawing conclusions purely from inter-word
attention patterns does not seem warranted.

The functions of special tokens are not yet well
understood. [CLS] is typically viewed as an ag-
gregated sentence-level representation (although
all token representations also contain at least
some sentence-level information, as discussed in
subsection 4.1); in that case, we may not see, for
example, full syntactic trees in inter-word atten-
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tion because part of that information is actually
packed in [CLS].

Clark et al. (2019) experiment with encoding
Wikipedia paragraphs with base BERT to consider
specifically the attention to special tokens, noting
that heads in early layers attend more to [CLS],
in middle layers to [SEP], and in final layers
to periods and commas. They hypothesize that its
function might be one of ‘‘no-op’’, a signal to
ignore the head if its pattern is not applicable to
the current case. As a result, for example, [ SEP]
gets increased attention starting in layer 5, but its
importance for prediction drops. However, after
fine-tuning both [SEP] and [CLS] get a lot of
attention, depending on the task (Kovaleva et al.,
2019). Interestingly, BERT also pays a lot of
attention to punctuation, which Clark et al. (2019)
explain by the fact that periods and commas are
simply almost as frequent as the special tokens,
and so the model might learn to rely on them for
the same reasons.

4.3 BERT Layers

The first layer of BERT receives as input a
combination of token, segment, and positional
embeddings.

It stands to reason that the lower layers have
the most information about linear word order.
Linetal. (2019) report a decrease in the knowledge
of linear word order around layer 4 in BERT-base.
This is accompanied by an increased knowledge
of hierarchical sentence structure, as detected by
the probing tasks of predicting the token index,
the main auxiliary verb and the sentence subject.

There is a wide consensus in studies with
different tasks, datasets, and methodologies that
syntactic information is most prominent in the
middle layers of BERT.* Hewitt and Manning
(2019) had the most success reconstructing syn-
tactic tree depth from the middle BERT layers (6-9
for base-BERT, 14-19 for BERT-large). Goldberg
(2019) reports the best subject-verb agreement
around layers 8-9, and the performance on syntac-
tic probing tasks used by Jawahar et al. (2019) also
seems to peak around the middle of the model.
The prominence of syntactic information in the
middle BERT layers is related to Liu et al.’s

4These BERT results are also compatible with findings
by Vig and Belinkov (2019), who report the highest attention
to tokens in dependency relations in the middle layers of
GPT-2.
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Figure 4: BERT layer transferability (columns
correspond to probing tasks, Liu et al. (2019a).

(2019a) observation that the middle layers of
Transformers are best-performing overall and the
most transferable across tasks (see Figure 4).

There is conflicting evidence about syntactic
chunks. Tenney et al. (2019a) conclude that ‘‘the
basic syntactic information appears earlier in the
network while high-level semantic features appear
at the higher layers’’, drawing parallels between
this order and the order of components in a typical
NLP pipeline—from POS-tagging to dependency
parsing to semantic role labeling. Jawahar et al.
(2019) also report that the lower layers were more
useful for chunking, while middle layers were
more useful for parsing. At the same time, the
probing experiments by Liu et al. (2019a) find
the opposite: Both POS-tagging and chunking
were performed best at the middle layers, in both
BERT-base and BERT-large. However, all three
studies use different suites of probing tasks.

The final layers of BERT are the most task-
specific. In pre-training, this means specificity to
the MLM task, which explains why the middle
layers are more transferable (Liu et al., 2019a). In
fine-tuning, it explains why the final layers change
the most (Kovalevaetal., 2019), and why restoring
the weights of lower layers of fine-tuned BERT
to their original values does not dramatically hurt
the model performance (Hao et al., 2019).

Tenney et al. (2019a) suggest that whereas
syntactic information appears early in the model
and can be localized, semantics is spread across
the entire model, which explains why certain
non-trivial examples get solved incorrectly at first
but correctly at the later layers. This is rather to be
expected: Semantics permeates all language, and
linguists debate whether meaningless structures
can exist at all (Goldberg, 2006, p.166—182). But
this raises the question of what stacking more
Transformer layers in BERT actually achieves in
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terms of the spread of semantic knowledge, and
whether that is beneficial. Tenney et al. compared
BERT-base and BERT-large, and found that the
overall pattern of cumulative score gains is the
same, only more spread out in the larger model.
Note that Tenney et al.’s (2019a) experiments
concern sentence-level semantic relations; Cui
et al. (2020) report that the encoding of ConceptNet
semantic relations is the worst in the early layers
and increases towards the top. Jawahar et al.
(2019) place ‘‘surface features in lower layers,
syntactic features in middle layers and semantic
features in higher layers’’, but their conclusion is
surprising, given that only one semantic task in
this study actually topped at the last layer, and
three others peaked around the middle and then
considerably degraded by the final layers.

5 Training BERT

This section reviews the proposals to optimize the
training and architecture of the original BERT.

5.1 Model Architecture Choices

To date, the most systematic study of BERT ar-
chitecture was performed by Wang et al. (2019b),
who experimented with the number of layers,
heads, and model parameters, varying one option
and freezing the others. They concluded that the
number of heads was not as significant as the
number of layers. That is consistent with the find-
ings of Voita et al. (2019b) and Michel et al.
(2019) (section 6), and also the observation by
Liu et al. (2019a) that the middle layers were the
most transferable. Larger hidden representation
size was consistently better, but the gains varied
by setting.

Allin all, changes in the number of heads and
layers appear to perform different functions.
The issue of model depth must be related to
the information flow from the most task-specific
layers closer to the classifier (Liu et al., 2019a), to
the initial layers which appear to be the most task-
invariant (Hao et al., 2019), and where the tokens
resemble the input tokens the most (Brunner et al.,
2020) (see subsection 4.3). If that is the case,
a deeper model has more capacity to encode
information that is not task-specific.

On the other hand, many self-attention heads
in vanilla BERT seem to naturally learn the same
patterns (Kovaleva et al., 2019). This explains



why pruning them does not have too much impact.
The question that arises from this is how far we
could get with intentionally encouraging diverse
self-attention patterns: Theoretically, this would
mean increasing the amount of information in the
model with the same number of weights. Raganato
et al. (2020) show for Transformer-based machine
translation we can simply pre-set the patterns that
we already know the model would learn, instead
of learning them from scratch.

Vanilla BERT is symmetric and balanced in
terms of self-attention and feed-forward layers, but
it may not have to be. For the base Transformer,
Press et al. (2020) report benefits from more
self-attention sublayers at the bottom and more
feedforward sublayers at the top.

5.2 Improvements to the Training Regime

Liu et al. (2019b) demonstrate the benefits of
large-batch training: With 8k examples, both the
language model perplexity and downstream task
performance are improved. They also publish their
recommendations for other parameters. You et al.
(2019) report that with a batch size of 32k BERT’s
training time can be significantly reduced with no
degradation in performance. Zhou et al. (2019)
observe that the normalization of the trained
[CLS] token stabilizes the training and slightly
improves performance on text classification tasks.

Gong et al. (2019) note that, because self-
attention patterns in higher and lower layers are
similar, the model training can be done in a
recursive manner, where the shallower version
is trained first and then the trained parameters are
copied to deeper layers. Such a ‘‘warm-start’’ can
lead to a 25% faster training without sacrificing
performance.

5.3 Pre-training BERT

The original BERT is a bidirectional Transformer
pre-trained on two tasks: NSP and MLM
(section 2). Multiple studies have come up with
alternative training objectives to improve on
BERT, and these could be categorized as follows:

e How to mask. Raffel et al. (2019) system-
atically experiment with corruption rate and
corrupted span length. Liu et al. (2019b)
propose diverse masks for training examples
within an epoch, while Baevski et al. (2019)
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mask every token in a sequence instead of
a random selection. Clinchant et al. (2019)
replace the MASK token with [UNK] token,
to help the model learn a representation for
unknowns that could be useful for transla-
tion. Song et al. (2020) maximize the amount
of information available to the model by
conditioning on both masked and unmasked
tokens, and letting the model see how many
tokens are missing.

What to mask. Masks can be applied to
full words instead of word-pieces (Devlin
et al., 2019; Cui et al., 2019). Similarly, we
can mask spans rather than single tokens
(Joshi et al., 2020), predicting how many
are missing (Lewis et al., 2019). Masking
phrases and named entities (Sun et al,
2019b) improves representation of structured
knowledge.

Where to mask. Lample and Conneau
(2019) use arbitrary text streams instead of
sentence pairs and subsample frequent out-
puts similar to Mikolov et al. (2013). Bao
etal. (2020) combine the standard autoencod-
ing MLM with partially autoregressive LM
objective using special pseudo mask tokens.

Alternatives to masking. Raffel et al. (2019)
experiment with replacing and dropping
spans; Lewis et al. (2019) explore deletion,
infilling, sentence permutation and docu-
ment rotation; and Sun et al. (2019c) predict
whether a token is capitalized and whether
it occurs in other segments of the same
document. Yang et al. (2019) train on dif-
ferent permutations of word order in the input
sequence, maximizing the probability of the
original word order (cf. the n-gram word or-
der reconstruction task (Wang et al., 2019a)).
Clark et al. (2020) detects tokens that were
replaced by a generator network rather than
masked.

NSP alternatives. Removing NSP does not
hurt or slightly improves performance (Liu
et al., 2019b; Joshi et al., 2020; Clinchant
et al.,, 2019). Wang et al. (2019a) and
Cheng et al. (2019) replace NSP with the
task of predicting both the next and the
previous sentences. Lan et al. (2020) replace
the negative NSP examples by swapped



sentences from positive examples, rather than
sentences from different documents. ERNIE
2.0includes sentence reordering and sentence
distance prediction. Bai et al. (2020) replace
both NSP and token position embeddings by
a combination of paragraph, sentence, and
token index embeddings. Li and Choi (2020)
experiment with utterance order prediction
task for multiparty dialogue (and also MLM
at the level of utterances and the whole
dialogue).

Other tasks. Sun et al. (2019c) propose
simultaneous learning of seven tasks, in-
cluding discourse relation classification and
predicting whether a segment is relevant for
IR. Guu et al. (2020) include a latent knowl-
edge retriever in language model pretrain-
ing. Wang et al. (2020c) combine MLM with
a knowledge base completion objective. Glass
et al. (2020) replace MLM with span predic-
tion task (as in extractive question answer-
ing), where the model is expected to provide
the answer not from its own weights, but
from a different passage containing the cor-
rect answer (a relevant search engine query

snippet).

Another obvious source of improvement is pre-
training data. Several studies explored the benefits
of increasing the corpus volume (Liu et al., 2019b;
Conneau et al., 2019; Baevski et al., 2019) and
longer training (Liu et al., 2019b). The data
also does not have to be raw text: There is a
number efforts to incorporate explicit linguistic
information, both syntactic (Sundararaman et al.,
2019) and semantic (Zhang et al., 2020). Wu
et al. (2019b) and Kumar et al. (2020) include
the label for a given sequence from an annotated
task dataset. Schick and Schiitze (2020) separately
learn representations for rare words.

Although BERT is already actively used as a
source of world knowledge (see subsection 3.3),
there is also work on explicitly supplying
structured knowledge. One approach is entity-
enhanced models. For example, Peters et al.
(2019a); Zhang et al. (2019) include entity
embeddings as input for training BERT, while
Poerner et al. (2019) adapt entity vectors to BERT
representations. As mentioned above, Wang et al.
(2020c) integrate knowledge not through entity
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Figure 5: Pre-trained weights help BERT find wider
optima in fine-tuning on MRPC (right) than training
from scratch (left) (Hao et al., 2019).

embeddings, but through the additional pre-
training objective of knowledge base completion.
Sunetal. (2019b,c) modify the standard MLM task
to mask named entities rather than random words,
and Yin et al. (2020) train with MLM objective
over both text and linearized table data. Wang et al.
(2020a) enhance RoBERTa with both linguistic
and factual knowledge with task-specific adapters.

Pre-training is the most expensive part of train-
ing BERT, and it would be informative to know
how much benefit it provides. On some tasks, a
randomly initialized and fine-tuned BERT obtains
competitive or higher results than the pre-trained
BERT with the task classifier and frozen weights
(Kovaleva et al., 2019). The consensus in the
community is that pre-training does help in most
situations, but the degree and its exact contribution
requires further investigation. Prasanna et al.
(2020) found that most weights of pre-trained
BERT are useful in fine-tuning, although there
are ‘‘better’” and ‘‘worse’’ subnetworks. One ex-
planation is that pre-trained weights help the fine-
tuned BERT find wider and flatter areas with
smaller generalization error, which makes the
model more robust to overfitting (see Figure 5
from Hao et al. [2019]).

Given the large number and variety of pro-
posed modifications, one would wish to know how
much impact each of them has. However, due to
the overall trend towards large model sizes, syste-
matic ablations have become expensive. Most
new models claim superiority on standard bench-
marks, but gains are often marginal, and estimates
of model stability and significance testing are
very rare.



5.4 Fine-tuning BERT

Pre-training + fine-tuning workflow is a crucial
part of BERT. The former is supposed to provide
task-independent knowledge, and the latter would
presumably teach the model to rely more on the
representations useful for the task at hand.

Kovaleva et al. (2019) did not find that to be the
case for BERT fine-tuned on GLUE tasks:’ during
fine-tuning, the most changes for three epochs
occurred in the last two layers of the models, but
those changes caused self-attention to focus on
[SEP] rather than on linguistically interpretable
patterns. It is understandable why fine-tuning
would increase the attention to [CLS], but not
[SEP]. If Clark et al. (2019) are correct that
[SEP] serves as ‘‘no-op’’ indicator, fine-tuning
basically tells BERT what to ignore.

Several studies explored the possibilities of
improving the fine-tuning of BERT:

e Taking more layers into account: learning
a complementary representation of the infor-
mation in deep and output layers (Yang and
Zhao, 2019), using a weighted combination
of all layers instead of the final one (Su and
Cheng, 2019; Kondratyuk and Straka, 2019),
and layer dropout (Kondratyuk and Straka,
2019).

e Two-stage fine-tuning introduces an inter-
mediate supervised training stage between
pre-training and fine-tuning (Phang et al.,
2019; Garg et al., 2020; Arase and Tsujii,
2019; Pruksachatkun et al., 2020; Glavas
and Vuli¢, 2020). Ben-David et al. (2020)
propose a pivot-based variant of MLM to
fine-tune BERT for domain adaptation.

e Adversarial token perturbations improve
the robustness of the model (Zhu et al., 2019).

e Adversarial regularization in combination
with Bregman Proximal Point Optimization
helps alleviate pre-trained knowledge forget-
ting and therefore prevents BERT from
overfitting to downstream tasks (Jiang et al.,
2019a).

e Mixout regularization improves the stab-
ility of BERT fine-tuning even for a small

SKondratyuk and Straka (2019) suggest that fine-tuning
on Universal Dependencies does result in syntactically
meaningful attention patterns, but there was no quantitative
evaluation.
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number of training examples (Lee et al.,
2019).

With large models, even fine-tuning becomes
expensive, but Houlsby et al. (2019) show that
it can be successfully approximated with adapter
modules. They achieve competitive performance
on 26 classification tasks at a fraction of the com-
putational cost. Adapters in BERT were also used
for multitask learning (Stickland and Murray,
2019) and cross-lingual transfer (Artetxe et al.,
2019). An alternative to fine-tuning is extracting
features from frozen representations, but fine-
tuning works better for BERT (Peters et al.,
2019b).

A big methodological challenge in the
current NLP is that the reported performance
improvements of new models may well be within
variation induced by environment factors (Crane,
2018). BERT is not an exception. Dodge et al.
(2020) report significant variation for BERT
fine-tuned on GLUE tasks due to both weight
initialization and training data order. They also
propose early stopping on the less-promising
seeds.

Although we hope that the above observations
may be useful for the practitioners, this section
does not exhaust the current research on fine-
tuning and its alternatives. For example, we do not
cover such topics as Siamese architectures, policy
gradient training, automated curriculum learning,
and others.

6 How Big Should BERT Be?

6.1 Overparameterization

Transformer-based models keep growing by or-
ders of magnitude: The 110M parameters of base
BERT are now dwarfed by 17B parameters of
Turing-NLG (Microsoft, 2020), which is dwarfed
by 175B of GPT-3 (Brown et al., 2020). This trend
raises concerns about computational complexity
of self-attention (Wu et al., 2019a), environmental
issues (Strubell et al., 2019; Schwartz et al., 2019),
fair comparison of architectures (ABenmacher
and Heumann, 2020), and reproducibility.
Human language is incredibly complex, and
would perhaps take many more parameters to
describe fully, but the current models do not make
good use of the parameters they already have.
Voita et al. (2019b) showed that all but a few
Transformer heads could be pruned without



Compression Performance Speedup  Model Evaluation

BERT-base (Devlin et al., 2019) x1 100% x1 BERT),  All GLUE tasks, SQUAD
BERT-small x3.8 91% - BERTst  All GLUE tasks
DistilBERT (Sanh et al., 2019) x1.5 90%" x1.6 BERT All GLUE tasks, SQuAD
BERT¢-PKD (Sun et al., 2019a) x1.6 98% x1.9 BERT No WNLI, CoLA, STS-B; RACE
BERT;-PKD (Sun et al., 2019a) x2.4 92% x3.7 BERT; No WNLI, CoLA, STS-B; RACE
Aguilar et al. (2019), Exp. 3 x1.6 93% - BERT CoLA, MRPC, QQP, RTE

-  BERT-48 (Zhaoet al., 2019) x62 87% x77 BERT,*f MNLI, MRPC, SST-2

.2 BERT-192 (Zhao et al., 2019) x5.7 93% x22 BERT,*f MNLI, MRPC, SST-2

§ TinyBERT (Jiao et al., 2019) x71.5 96% x9.4 BERT,!  No WNLI; SQuAD

Z MobileBERT (Sun et al., 2020) x4.3 100% x4 BERT,;f  No WNLI; SQuAD

2 PD(Turcetal., 2019) x1.6 98% x2.5  BERTs'  No WNLI, CoLA and STS-B
WaLDOR( (Tian et al., 2019) x4.4 93% x9 BERTs!l  SQuAD
MiniLM (Wang et al., 2020b) x1.65 99% x2 BERT No WNLI, STS-B, MNLI,,; SQuAD
MiniBERT(Tsai et al., 2019) x6** 98% x27*  mBERT3;" CoNLL-18 POS and morphology
BiLSTM-soft (Tang et al., 2019) x110 91% x434%  BiLSTM, MNLI, QQP, SST-2

é = Q-BERT-MP (Shen et al., 2019) x13 98%1 — BERT;;  MNLI, SST-2, CoNLL-03, SQuAD

5.2 BERT-QAT (Zafrir et al., 2019) x4 99% - BERT;, No WNLI, MNLIL; SQuAD

&8 GoBO (Zadeh and Moshovos, 2020) x9.8 99% — BERT), MNLI

w  McCarley et al. (2020), ff2 x 2.2} 98%* x1.9%  BERTy  SQuAD, Natural Questions

£ RPP(Guoetal,2019) x1.7¢ 99%* — BERT,;  No WNLI, STS-B; SQuAD

2 Soft MvP (Sanh et al., 2020) %33 94%9 — BERT;;  MNLI, QQP, SQuAD

&~ mp (Chen et al., 2020), rewind 50% x1.4-2.5 94-100% — BERT;;  No MNLI-mm; SQuAD
ALBERT-base (Lan et al., 2020) X9 97% - BERT;»’ MNLI, SST-2

E ALBERT-xxlarge (Lan et al., 2020) x0.47 107% — BERT;» MNLI, SST-2

&  BERT-of-Theseus (Xu et al., 2020) x1.6 98% x1.9 BERT No WNLI
PoWER-BERT (Goyal et al., 2020) N/A 99% x2-4.5 BERT);;  No WNLI; RACE

Table 1: Comparison of BERT compression studies. Compression, performance retention, and inference
time speedup figures are given with respect to BERTy,, unless indicated otherwise. Performance
retention is measured as a ratio of average scores achieved by a given model and by BERT},.. The
subscript in the model description reflects the number of layers used. *Smaller vocabulary used. "The
dimensionality of the hidden layers is reduced. |/ Convolutional layers used. *Compared to BERT qrge.
**Compared to mBERT. $As reported in Jiao et al. (2019).%In comparison to the dev set.

significant losses in performance. For BERT,
Clark et al. (2019) observe that most heads in
the same layer show similar self-attention patterns
(perhaps related to the fact that the output of all
self-attention heads in a layer is passed through
the same MLP), which explains why Michel et al.
(2019) were able to reduce most layers to a single
head.

Depending on the task, some BERT heads/
layers are not only redundant (Kao et al.,
2020), but also harmful to the downstream task
performance. Positive effect from head disabling
was reported for machine translation (Michel et al.,
2019), abstractive summarization (Baan et al.,
2019), and GLUE tasks (Kovaleva et al., 2019).
Additionally, Tenney et al. (2019a) examine
the cumulative gains of their structural probing
classifier, observing that in 5 out of 8 probing
tasks some layers cause a drop in scores (typically
in the final layers). Gordon et al. (2020) find that
30%—40% of the weights can be pruned without
impact on downstream tasks.
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In general, larger BERT models perform better
(Liu et al., 2019a; Roberts et al., 2020), but not
always: BERT-base outperformed BERT-large
on subject-verb agreement (Goldberg, 2019) and
sentence subject detection (Lin et al., 2019). Given
the complexity of language, and amounts of pre-
training data, it is not clear why BERT ends
up with redundant heads and layers. Clark et al.
(2019) suggest that one possible reason is the use
of attention dropouts, which causes some attention
weights to be zeroed-out during training.

6.2 Compression Techniques

Given the above evidence of overparameteriza-
tion, it does not come as a surprise that BERT can
be efficiently compressed with minimal accu-
racy loss, which would be highly desirable for
real-world applications. Such efforts to date are
summarized in Table 1. The main approaches are
knowledge distillation, quantization, and pruning.

The studies in the knowledge distillation
framework (Hinton et al., 2014) use a smaller



student-network trained to mimic the behavior of
a larger teacher-network. For BERTS, this has been
achieved through experiments with loss functions
(Sanh et al., 2019; Jiao et al., 2019), mimick-
ing the activation patterns of individual portions
of the teacher network (Sun et al., 2019a), and
knowledge transfer at the pre-training (Turc et al.,
2019; Jiao et al., 2019; Sun et al., 2020) or fine-
tuning stage (Jiao et al., 2019). McCarley et al.
(2020) suggest that distillation has so far worked
better for GLUE than for reading comprehen-
sion, and report good results for QA from a com-
bination of structured pruning and task-specific
distillation.

Quantization decreases BERT’s memory
footprint through lowering the precision of its
weights (Shen et al., 2019; Zafrir et al., 2019).
Note that this strategy often requires compatible
hardware.

As discussed in section 6, individual self-
attention heads and BERT layers can be disabled
without significant drop in performance (Michel
et al., 2019; Kovaleva et al., 2019; Baan et al.,
2019). Pruning is a compression technique that
takes advantage of that fact, typically reducing the
amount of computation via zeroing out of certain
parts of the large model. In structured pruning,
architecture blocks are dropped, as in LayerDrop
(Fan et al., 2019). In unstructured, the weights in
the entire model are pruned irrespective of their
location, as in magnitude pruning (Chen et al.,
2020) or movement pruning (Sanh et al., 2020).

Prasanna et al. (2020) and Chen et al. (2020)
explore BERT from the perspective of the lot-
tery ticket hypothesis (Frankle and Carbin, 2019),
looking specifically at the ‘‘winning’’ subnet-
works in pre-trained BERT. They independently
find that such subnetworks do exist, and that trans-
ferability between subnetworks for different tasks
varies.

If the ultimate goal of training BERT is com-
pression, Li et al. (2020) recommend training
larger models and compressing them heavily
rather than compressing smaller models lightly.

Other techniques include decomposing BERT’s
embedding matrix into smaller matrices (Lanetal.,
2020), progressive module replacing (Xu et al.,
2020), and dynamic elimination of intermediate
encoder outputs (Goyal et al., 2020). See Ganesh
et al. (2020) for a more detailed discussion of
compression methods.
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6.3 Pruning and Model Analysis

There is a nascent discussion around pruning as a
model analysis technique. The basic idea is that
a compressed model a priori consists of elements
that are useful for prediction; therefore by finding
out what they do we may find out what the whole
network does. For instance, BERT has heads
that seem to encode frame-semantic relations, but
disabling them might not hurt downstream task
performance (Kovaleva et al., 2019); this suggests
that this knowledge is not actually used.

For the base Transformer, Voita et al. (2019b)
identify the functions of self-attention heads and
then check which of them survive the pruning,
finding that the syntactic and positional heads are
the last ones to go. For BERT, Prasanna et al.
(2020) go in the opposite direction: pruning on the
basis of importance scores, and interpreting the
remaining ‘‘good’’ subnetwork. With respect to
self-attention heads specifically, it does not seem
to be the case that only the heads that potentially
encode non-trivial linguistic patterns survive the
pruning.

The models and methodology in these stud-
ies differ, so the evidence is inconclusive. In
particular, Voita et al. (2019b) find that before
pruning the majority of heads are syntactic, and
Prasanna et al. (2020) find that the majority of
heads do not have potentially non-trivial attention
patterns.

An important limitation of the current head
and layer ablation studies (Michel et al., 2019;
Kovaleva et al., 2019) is that they inherently
assume that certain knowledge is contained in
heads/layers. However, there is evidence of
more diffuse representations spread across the
full network, such as the gradual increase in
accuracy on difficult semantic parsing tasks
(Tenney et al., 2019a) or the absence of
heads that would perform parsing ‘‘in general’’
(Clark et al., 2019; Htut et al., 2019). If
so, ablating individual components harms the
weight-sharing mechanism. Conclusions from
component ablations are also problematic if the
same information is duplicated elsewhere in the
network.

7 Directions for Further Research

BERTology has clearly come a long way, but it
is fair to say we still have more questions than
answers about how BERT works. In this section,



we list what we believe to be the most promising
directions for further research.

Benchmarks that require verbal reasoning.
Although BERT enabled breakthroughs on many
NLP benchmarks, a growing list of analysis papers
are showing that its language skills are not as
impressive as they seem. In particular, they were
shown to rely on shallow heuristics in natural lan-
guage inference (McCoy et al., 2019b; Zellers
et al., 2019; Jin et al., 2020), reading compre-
hension (Si et al., 2019; Rogers et al., 2020;
Sugawara et al.,, 2020; Yogatama et al., 2019),
argument reasoning comprehension (Niven and
Kao, 2019), and text classification (Jin et al.,
2020). Such heuristics can even be used to recon-
struct a non—publicly available model (Krishna
et al., 2020). As with any optimization method, if
there is a shortcut in the data, we have no reason
to expect BERT to not learn it. But harder datasets
that cannot be resolved with shallow heuristics are
unlikely to emerge if their development is not as
valued as modeling work.

Benchmarks for the full range of linguistic
competence. Although the language models
seem to acquire a great deal of knowledge about
language, we do not currently have comprehensive
stress tests for different aspects of linguistic
knowledge. A step in this direction is the
““Checklist’’ behavioral testing (Ribeiro et al.,
2020), the best paper at ACL 2020. Ideally, such
tests would measure not only errors, but also
sensitivity (Ettinger, 2019).

Developing methods to ‘‘teach’ reasoning.
While large pre-trained models have a lot of know-
ledge, they often fail if any reasoning needs to be
performed on top of the facts they possess (Talmor
et al., 2019, see also subsection 3.3). For instance,
Richardson et al. (2020) propose a method to
“‘teach’” BERT quantification, conditionals, com-
paratives, and Boolean coordination.

Learning what happens at inference time.
Most BERT analysis papers focus on different
probes of the model, with the goal to find what
the language model ‘‘knows’’. However, probing
studies have limitations (subsection 3.4), and to
this point, far fewer papers have focused on
discovering what knowledge actually gets used.
Several promising directions are the ‘‘amnesic