
Reproducible and Efficient Benchmarks for Hyperparameter

Optimization of Neural Machine Translation Systems

Xuan Zhang and Kevin Duh

Johns Hopkins University

xuanzhang@jhu.edu, kevinduh@cs.jhu.edu

Abstract

Hyperparameter selection is a crucial part of

building neural machine translation (NMT)

systems across both academia and industry.

Fine-grained adjustments to a model’s archi-

tecture or training recipe can mean the differ-

ence between a positive and negative research

result or between a state-of-the-art and under-

performing system. While recent literature has

proposed methods for automatic hyperparame-

ter optimization (HPO), there has been limited

work on applying these methods to neural

machine translation (NMT), due in part to the

high costs associated with experiments that

train large numbers of model variants. To

facilitate research in this space, we introduce

a lookup-based approach that uses a library

of pre-trained models for fast, low cost HPO

experimentation. Our contributions include (1)

the release of a large collection of trained NMT

models covering a wide range of hyperparam-

eters, (2) the proposal of targeted metrics for

evaluating HPO methods on NMT, and (3) a

reproducible benchmark of several HPO meth-

ods against our model library, including novel

graph-based and multiobjective methods.

1 Introduction

Choosing effective hyperparameters is crucial

for building strong neural machine translation

(NMT) systems. Although some choices present

obvious trade-offs (e.g., more and larger layers

tend to increase quality at the cost of speed),

others are more subtle (e.g., effects of batch size,

learning rate, and normalization techniques on

different layer types). Optimal versus suboptimal

hyperparameters can lead to dramatic swings in

system performance; consider the wide range of

BLEU scores for variants of the same base system

in Figure 1 (left). In practice, these hyperparame-

ters are often tuned manually based on

intuition and heuristics, a tedious and error-prone

process that can lead to unreliable experimental

results and underperforming shared task or

production systems. The difficulty is compounded

when system builders must jointly optimize

multiple objectives, such as translation accuracy

(BLEU) and decoding speed, which are largely

uncorrelated as shown in Figure 1 (right).

In the past decade, various hyperparameter

optimization (HPO) methods have emerged in

the machine learning literature under the labels of

‘‘AutoML’’ (Bergstra et al., 2011; Hutter et al.,

2011; Bardenet et al., 2013; Snoek et al., 2015)

and ‘‘neural architecture search’’ (Zoph and Le,

2016; Liu et al., 2018a,b; Cai et al., 2018; Real

et al., 2019). However, it is unclear how they

perform on NMT; we are not aware of any

prior work with comprehensive evaluation. One

challenge is that the state-of-the-art NMT models

(Sutskever et al., 2014; Bahdanau et al., 2015;

Gehring et al., 2017; Vaswani et al., 2017) require

significant computational resources for training.

Secondly, they usually have large hyperparameter

search spaces. Thus, it is prohibitively expensive

in practice to compare HPO methods on NMT

tasks.

In order to enable reproducible HPO research

on NMT tasks, we adopt a benchmark procedure

based on ‘‘table-lookup’’. This approach was

recently introduced to neural architecture search

by Ying et al. (2019), and to hyperparameter

optimization by Klein and Hutter (2019). First, we

train an extremely large number of NMT models

with diverse hyperparameter settings and record

their performance metrics (e.g., BLEU, decoding

time) in a table. Then, we constrain our HPO

methods to sample from this finite set of models.

This allows us to simply ‘‘look-up’’ their pre-

computed performance metrics, and amortizes the

burden of computation: As long as we ensure that

393

Transactions of the Association for Computational Linguistics, vol. 8, pp. 393–408, 2020. https://doi.org/10.1162/tacl a 00322

Action Editor: Alexandra Birch. Submission batch: 11/2019; Revision batch: 2/2020; Published 7/2020.
c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024

https://doi.org/10.1162/tacl_a_00322


Figure 1: Left: Histogram of BLEU scores that show

wide variance in performance for a base NMT system

(transformer) with different hyperparameters (e.g.,

BPE operations, # of layers, initial learning rate).

Right: Scatterplot of BLEU and decoding time with

different hyperparameters. Gold stars represent the

Pareto-optimal systems.

we have trained and pre-computed a large number

of representative NMT models beforehand, HPO

algorithm developers no longer need to deal with

the cost of training NMT. Importantly, this kind

of benchmark significantly speeds up the HPO

experiment turnover time, enabling fast repeated

trials for rigorous tests and facilitates detailed

error analysis.

The main contributions of this work are:

1. Dataset: We release a benchmark dataset1 for

comparing HPO methods on NMT models.

This ‘‘table-lookup’’ HPO dataset supports

both single-objective and multiobjective op-

timization of translation accuracy and de-

coding time (Section 3). Specifically, we

trained a total of 2,245 Transformers

(Vaswani et al., 2017) on six different corpora

(with a cost of approximately 1,547 GPU

days), and collected all pairs of hyperpara-

meter settings and corresponding perfor-

mance metrics.

2. Evaluation protocols: We provide three

kinds of metrics for evaluating HPO methods,

based on different computational budgets

(Section 4). We also demonstrate error

analysis techniques that are enabled by this

‘‘table-lookup’’ framework, which provide

insights into algorithm behavior (Section 7).

3. HPO method benchmarks: We benchmark

the performance of several HPO methods on

our dataset (Section 6). These include

Bayesian optimization as well as a novel

graph-based method that exploits the struc-

ture of the hyperparameter space (Section 5).

We also extend these methods to handle the

1https://github.com/Este1le/hpo_nmt.

multiobjective optimization of both BLEU

and decoding time. These experiments illus-

trate how to utilize the dataset to rigorously

evaluate HPO for NMT.

2 HPO Problem Definition

Given a machine learning algorithm with H

hyperparameters, we denote the domain of the

h-th hyperparameter by Λh and the overall

hyperparameter configuration space as Λ = Λ1×
Λ2× . . .ΛH . When trained with a hyperparameter

setting λ ∈ Λ on data Dtrain, the algorithm’s

performance metric on some validation dataDvalid

is f (λ) := V (λ,Dtrain,Dvalid). In the context

of NMT, f(·) or V(·) could be the perplexity,

translation accuracy (e.g., BLEU score), or

decoding time on Dvalid. In general, f(·) is

computationally expensive to obtain; it requires

training a model to completion, then evaluating

some performance metric on a validation set. For

purposes of exposition, we assume that lower f(·)
is better, so we might define f(·) as 1 − BLEU.

The goal of hyperparameter optimization is then

to find a λ⋆ = argminλ∈Λ f (λ), with as few

evaluations of f(·) as possible. An HPO problem

can be challenging for three reasons: (a) Λ may

be a combinatorially large space, prohibiting grid

search over hyperparameters. (b) f(·) may be

expensive to compute, so there is a tight budget

on how many evaluations of f(·) are allowed. (c)

f is not a continuous function and no gradient

information can be exploited, forcing us to view

the argmin as a blackbox discrete search problem.

NMT HPO search exhibits all these conditions.

One class of algorithms that tackles the HPO

problem is sequential model-based optimization

(SMBO), illustrated in Figure 2. SMBO appro-

ximates f with a cheap-to-evaluate surrogate

model f̂ (Feurer and Hutter, 2019; Luo, 2016;

Jones et al., 1998). SMBO starts by querying f

with initial hyperparameters {λinit} and recording

the resulting (λinit, f(λinit)) pairs. Then, it

iteratively (1) fits the surrogate f̂ on pairs

observed so far; (2) gets the predictions f̂(λi)
for unlabeled/unobserved hyperparameters; and

(3) selects a promising λp to query next based

on these predictions and an acquisition function,

whose role is to trade off exploration in Λ with

high model uncertainty and exploitation in Λ with

low f̂(·).

394

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024

https://github.com/Este1le/hpo_nmt


Figure 2: SMBO framework. The part shaded in

light blue contains two ingredients required for

implementing a SMBO method: the surrogate model

and the acquisition function, for which we will present

two choices in Section 5.

Evolutionary algorithms (Eberhart and Shi,

1998; Simon, 2013) are also used to solve HPO

problems. Unlike SMBO, they do not approximate

f with a surrogate f̂ ; rather, they directly sample

hyperparameters with high f(·) from a population

and recombine them to form the next query.2

3 Table-Lookup HPO Datasets

3.1 Table-Lookup Framework

To evaluate a newly devised HPO algorithm,

one needs to run each component of the loop

in Figure 2. However, the ‘‘query’’ step is

computationally expensive: We need to train a

new NMT system each time we sample a new

hyperparameter.

The idea of table lookup is to simply pre-train

a large set of I NMT systems and record the pairs

{λi, f(λi)}i=1,...,I in a table. Thus, when running

the loop in Figure 2, the HPO algorithm developer

can look up f(λi) whenever necessary, without

having to train a NMT model from scratch. This

significantly speeds up the experimental process.

The advantages are:

1. One can perform multiple random trials of

the same algorithm, to test robustness.

2. One can perform comparisons with more

baseline algorithms, to make stronger claims.

3. One can perform the same experiment under

different budget constraints, to simulate

different real-world use cases.

2We focus on SMBO methods in this paper, but note that

our dataset is amenable to any HPO method.

Figure 3: The workflow of HPO algorithm

selection/development. HPO algorithm candidates are

first evaluated on lookup tables built from multiple

MT datasets. Promising candidates may be further

developed and evaluated. The most robust one will be

selected to apply to the target MT data.

4. One can track the progress of an experiment

with respect to oracle results, allowing for

more detailed error analysis of HPO.

To be effective, table lookup depends on

two important assumptions: First, the table has

to be sufficiently large to cover the space of

hyperparameters Λ. Second, the HPO algorithm

needs to be modified to sample from the finite

set of hyperparameters in the table; this is usually

easy to implement but the assumption is that

finite-sample results will generalize.

3.2 HPO Algorithm Selection/Development

There exist many choices of HPO algorithm,

which can be evaluated or further developed on

our lookup tables. Figure 3 illustrates this process.

The performance of HPO algorithm candidates on

various MT datasets serves as the basis for HPO

selection. The selected HPO algorithm can then

be applied on new MT datasets.

There are two kinds of generalization effects

at play: (1) generalization of an HPO algorithm

across MT datasets, and (2) generalization of

MT models and their associated hyperparameters

across MT datasets. We mainly care about (1)

in the algorithm development process, which

is why we opt to provide six distinct datasets

described in Section 3.3 (as opposed to, e.g.,

1 dataset trained on large MT data). If an

HPO algorithm performs efficiently in finding

good hyperparameter configurations on many MT

datasets, then we can more reasonably believe that

it will run quickly on a new dataset, regardless of

395

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



the underlying MT data characteristics. Even if

the best configuration on one MT dataset does not

transfer to another, a robust HPO algorithm should

still be capable of finding good hyperparameters

because the algorithm learns from scratch on each

dataset independently.

3.3 MT Data and Setup

To create a robust HPO benchmark, we trained

NMT models on six different parallel corpora,

which exhibit a variety of characteristics:

TED Talks: We trained Chinese–English (zh-en)

and Russian–English (ru-en) models on the data-

split of Duh (2018). This is a mid-resource setup,

where Dtrain consists of 170k lines for zh-en and

180k lines for ru-zh. Dvalid has 1,958 sentences

and is multiway parallel for both language-pairs.

WMT2019 Robustness task (Li et al., 2019):

We trained models on Japanese–English data, in

both directions (ja-en, en-ja). Dtrain has 4 M

lines from a mix of domains. Dvalid is a

concatenation of 4k mixed-domain sentences and

1k Reddit sentences, for a total of 5,405 lines. The

goal of the Robustness task is to test how NMT

systems perform on non-standard and noisy text

(e.g., Reddit).

Low Resource tasks: We trained models using the

IARPA MATERIAL datasets for Swahili–English

(sw-en) and Somali–English (so-en). Dtrain

consists of only 24k lines for both language pairs

(BUILD set), and Dvalid consists of 2675 lines

(ANALYSIS2 set).

Although there are many potential MT datasets

we could choose from, we believe these six data-

sets form a good representative set. It ranges

from high-to-low resource; it contains both noisy

and clean settings. These datasets also have

different levels of similarity—for example, zh-en

and ru-en TED talks use the same multiway

parallel Dvalid, so one could ask whether the

optimal hyperparameters transfer.

The text is tokenized by Jieba for Chinese, by

Kytea for Japanese, and by the Moses tokenizer for

the rest. Byte pair encoding (BPE) segmentation

(Sennrich et al., 2016) is learned and applied sepa-

rately for each side of bitext. We train Transformer

NMT models with Sockeye3 (Hieber et al., 2017),

focusing on these hyperparameters:

3https://github.com/awslabs/sockeye.

• preprocessing configurations: number of

BPE symbols4 (bpe)

• training settings: initial learning rate (init lr)

for the Adam optimizer

• architecture designs:5 number of layers

(#layers), embedding size (#embed), number

of hidden units in each layer (#hidden), num-

ber of heads in self-attention (#att heads).

These hyperparameters are chosen because they

significantly affect both accuracy and speed of the

resulting NMT. Other hyperparameters are kept at

their Sockeye defaults.6 Table 1 shows our overall

hyperparameter space Λ; in total among all six

datasets, we have 1,983 models; Table 2 shows

the exact number of models per dataset, along

with the best models and their hyperparameter

settings.7

Rationale for Hyperparameter Values: There

are various design trade-offs in deciding the range

and granularity of hyperparameter values. First,

we might expand on a wider range of values (e.g.,

change #hidden = {1024, 2048} to {512, 1024,

2048, 4096}). The effect of this is that we test the

HPO algorithm on a wider range of inputs, with

potentially more variability in metrics like BLEU

and inference speed. Second, we might expand on

a more finegrained range of values (e.g., change

#hidden = {1024, 2048} to {1024, 1536, 2048}).
This might result in smoother metrics, making

it easier for HPO algorithms to learn. Although

wider range and finer granularity are desirable

properties for a HPO dataset, each additional value

causes an exponential increase in the number

of models because of the cross-product of all

values. In general, we think Table 1 represents

a reasonable set of values used in the literature.

Nevertheless, it should be clarified that empirical

findings from table-lookup datasets should be

interpreted in light of the limits of hyperparameter

range and granularity.

4Same number of BPE operations is used for both sides.
5Same values are used for encoder and decoder.
6In this paper, we only focused on integer and real-valued

hyperparameters. Categorical hyperparameters need special

treatment for most HPO algorithms, thus are not considered.
7Note that not all possible hyperparameter configurations

are included in the dataset: We excluded ones where training

failed or clearly did not learn (e.g., achieved ≈ 0 BLEU).

396

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024

https://github.com/awslabs/sockeye


dataset bpe (1k) #layers #embed #hidden #att heads init lr (10−4)

zh, ru, ja, en 10, 30, 50 2, 4 256, 512, 1024 1024, 2048 8, 16 3, 6, 10

sw 1, 2, 4, 8, 16, 32 1, 2, 4, 6 256, 512, 1024 1024, 2048 8, 16 3, 6, 10

so 1, 2, 4, 8, 16, 32 1, 2, 4 256, 512, 1024 1024, 2048 8, 16 3, 6, 10

Table 1: Hyperparameter search space for the NMT systems.

Dataset #models Best BLEU bpe #layers #embed #hidden #att heads init lr

zh-en 118 14.66 30k 4 512 1024 16 3e-4

ru-en 176 20.23 10k 4 256 2048 8 3e-4

ja-en 150 16.41 30k 4 512 2048 8 3e-4

en-ja 168 20.74 10k 4 1024 2048 8 3e-4

sw-en 767 26.09 1k 2 256 1024 8 6e-4

so-en 604 11.23 8k 2 512 1024 8 3e-4

Table 2: For each language pair, we report the number of NMT systems trained on it, the oracle best

BLEU we obtained, and its corresponding hyperparameter configuration.

3.4 Objectives: Accuracy and Cost

We train all models on Dtrain until they converge

in terms of perplexity on Dvalid. We then record

various performance measurements:

• Translation accuracy: BLEU (Papineni

et al., 2002) and perplexity on Dvalid.

• Computational cost: GPU wall clock time

for decoding Dvalid, number of updates for

the model to converge, GPU memory used for

training, total number of model parameters.

In this paper, we use BLEU on Dvalid for

single-objective experiments; we use BLEU and

decoding time for multiobjective experiments.

3.5 Hyperparameter

Importance/Correlation

We might be interested in seeing whether good

configurations are always good across datasets.

This can be done by ranking configurations by

BLEU for each dataset, then measuring correlation

between rankings. We show the Spearman’s

correlation coefficient in Figure 4. NMT systems

with same language pairs (ja-en vs. en-ja) are

highly correlated. On the contrary, other pairs

show low correlation (0.084 for ja-en vs. so-en),

implying the need to run HPO on new datasets

separately.

The table-lookup approach also enables in-

depth analyses of how hyperparameters generally

affect system performance. Following Klein and

Hutter (2019), we assess the importance of

Figure 4: Correlation of hyperparameter rankings

across MT datasets.8

hyperparameters with fANOVA, which computes

the variation in BLEU when changing a specific

hyperparameter with values of all the other hyper-

parameters fixed. In Figure 5, on en-ja, when

considering only the top performing NMT models

(top left), #att heads, init lr, and #embed impact

BLEU the most, over the entire configuration

space (top middle), #embed is the distinguishing

factor. The analysis can be extended to pairs

of hyperparameters, where we observe the

interaction of init lr and #embed being important

(Figure 5 bottom left).

8The ranking is computed only on the subset of MT

systems common in all datasets. For this, we consider 30k

bpe (for zh, ru, ja, en) to be equivalent to 32k bpe (for

sw, so).

397

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



Figure 5: The importance of each hyperparameter (top)

and the eight most important hyperparameter pairs

(bottom) for top 1% (left), and all NMT models ranked

by BLEU on en-ja (middle) and sw-en (right).

Questions may arise over whether the results

on en-ja can be taken as general conclusions. We

find that it is dataset-dependent—hyperparameter

importance ranking differs across language pairs,

and is dependent on the range and granularity of

hyperparameters considered. As shown in the right

column of Figure 5, bpe is the most important

hyperparameter for sw-en, instead of #embed. This

shows the diversity of our selected MT datasets

and the hyperparameter importance analysis is a

good tool for probing the search space charac-

teristics of these datasets.

3.6 Reproducible and Efficient Benchmarks

Our table-lookup dataset enables reproducible and

efficient benchmarks for HPO of NMT systems.

Li and Talwalkar (2019) introduce two notions

of reproducibility: exact reproducibility (the

reproducibility of reported experimental results);

and broad reproducibility (the generalization of

the experimental results).9 Our benchmarks are

exact reproducible in the sense that we provide the

tables that record all model results (Section 3.3)

and the code to run and evaluate our HPO

algorithms (Section 6). However, they are not

guaranteed to be broad reproducible, because the

generalizability of the results might be restricted

due to fixed collections of hyperparameter

configurations, the variance associated with

multiple runs, and the unknown best representative

set of MT data. As a result, in this work, we should

be careful to not make general conclusions from

the observations, but to show how the dataset can

be potentially used in facilitating HPO research.

9They comment: ‘‘Of the 12 papers published since

2018 at NeurIPS, ICML, and ICLR that introduce novel

Neural Architecture Search methods, none are exactly

reproducible.’’

4 Evaluation Protocols

To assess HPO method performance, we measure

the runtime to reach a quality indicator (e.g.,

BLEU) target value. The runtime is defined as the

number of NMT models trained, or equivalently

the number of function evaluations f(λ) in

Figure 2. We consider two ways to measure

the HPO performance: fixed-target and fixed-

budget.

4.1 Single-Objective Evaluation Metrics

For single-objective optimization, we have:

• fixed-target best (ftb): We fix the quality

indicator value to the best value in the dataset

and measure runtime to reach this target.

• fixed-target close (ftc): We measure the

runtime to reach a target that is slightly less

than the oracle best. This is useful when one

can tolerate some performance loss.

• fixed-budget (fb): We fix the budget of

function evaluations and measure the dif-

ference between the oracle best quality

indicator value (e.g., oracle best BLEU) in

the dataset vs. the best value achieved by

systems queried by the HPO method.

The fixed-budget metric asks what is the best

possible system assuming a hard constraint on

training resources. The fixed-target metrics ask

how much training information is needed to find

the best (or approximate best) system in the

dataset.

4.2 Multiobjective Evaluation Metrics

In practice, one might desire to optimize multiple

objectives, such as translation accuracy and speed.

Suppose we have J objectives, and they can be

jointly represented as F (λ) = [f 1(λ), f 2(λ),
· · · , fJ(λ)]. As it is unlikely that any one λ

will optimize all objectives simultaneously, we

adopt the concept of Pareto optimality (Godfrey

et al., 2007). In the context of minimization,

λ is said to dominate λ′, that is, λ ≺ λ′, if

f j(λ) ≤ f j(λ′) ∀j and f j(λ) < f j(λ′) for at

least one j. If nothing dominates λ, we call it

the Pareto optimal solution. The set of all Pareto

solutions is referred to as the Pareto front, that

is, {λ | ∄λ′ ∈ Λ : λ′ ≺ λ}. Intuitively, these

are solutions satisfying all possible trade-offs

in the multiobjective space. Figure 1 shows an

398

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



example of Pareto solutions that maximize BLEU

and minimize speed.

For multiobjective optimization, the quality

indicator becomes the Pareto front, thus we have:

• fixed-target all (fta): We measure the

runtime to find all points on the Pareto front.

• fixed-target one (fto): We measure the

runtime to get at least one Pareto point.

• fixed-budget (fbp): We fix the budget of

function evaluations and measure the number

of Pareto-optimal points obtained.

In the literature, a common way to compare HPO

methods is to plot quality indicator value as a

function of runtime on a graph (e.g., see Figure 6).

The proposed metrics can be viewed as summary

statistics drawn as line thresholds on such graphs

(Hansen et al., 2016), where the budget/target is

set to a value appropriate for the use case.

4.3 Repeated Trials

Some HPO methods may be sensitive to

randomness in initial seeds {λinit} (Feurer et al.,

2015). We suggest that repeated randomized trials

are important for a rigorous evaluation, and this

is only feasible with a table-lookup dataset. In

our experiments, we average results of HPO runs

across 100 trials, where each trial is seeded with

a different set of 3 random initial hyperparameter

settings.

5 Methods

We now describe two HPO/SMBO methods used

in our experiments: Bayesian optimization10 is

a popular method. Graph-based SMBO is a

novel method that adapts ideas in graph-based

semi-supervised learning to the HPO problem.

5.1 Bayesian Optimization (BO)

Given a target function f : Λ → R, Bayesian

optimization (Brochu et al., 2010; Shahriari et al.,

2015; Frazier, 2018) aims to find an input

λ⋆ ∈ argminλ∈Λ f(λ). It models f with a

posterior probability distribution p(f | L), where

L is a set of observed points. This posterior

distribution is updated each time we observe f at

a new point λp. The utility of each candidate

10There are works adopting Bayesian optimization for

HPO of statistical machine translation systems (Miao et al.,

2014; Beck et al., 2016).

point is quantified by an acquisition function

a : Λ → R, and λp ∈ argmaxλ∈Λ a(λ). In

practice, a prominent choice for p(f | L) is

Gaussian process regression, and a common

acquisition function is Expected Improvement

(EI).

5.1.1 Gaussian Process Regression

A Gaussian Process (GP) (Rasmussen, 2003)

G(m(λ), k(λ,λ′)) is a collection of random

variables such that any finite subset of them

follows a multivariate Gaussian distribution. A GP

is fully specified by a meanm(λ) and a covariance

function or a kernel k(λ,λ′), and the sufficient

statistics of the posterior predictive distribution,

µ(·)11 and Σ(·), can be computed with

µ(λ) = KT
⋆K

−1y, (1)

Σ(λ) = k(λ,λ)−KT
⋆K

−1K⋆, (2)

where y = [. . . ; f(λ); . . . , ], K⋆ =
k(Λobserved,λ) andK = k(Λobserved,Λobserved).
In the case of HPO, the kernel k() measures

the similarity between hyperparameter configura-

tions and µ() is a prediction of the f() values of

not-evaluated hyperparameters.

5.1.2 Expected Improvement (EI)

The EI score (Schonlau et al., 1998) is defined as:

aEI(λ) = E[max(f̂(λ)− fmin, 0)], (3)

where fmin is the best observed value thus far,

and f̂(λ) = µ(λ). When the prediction f̂(λ)
follows a normal distribution as in the GP, EI can

be computed in a closed form. Our acquisition

function computes EI for each point in the grid of

hyperparameters, and queries the one with largest

value.

5.2 Graph-Based SMBO (GB)

Semi-supervised learning addresses the question

how to utilize a handful of labeled data and a large

amount of unlabeled data to improve prediction

accuracy. Graph-based semi-supervised learning

(GBSSL, Zhu et al., 2003; Zhu, 2005) describes

the structure of data with a graph, where each

vertex is a data point and each weighted edge

reflects the similarity between vertices. It makes a

smoothness assumption that neighbors connected

11For simplicity, we assume a mean of 0 for the prior.

399

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



by edges tend to have similar labels, and labels

can propagate throughout the graph.

In SMBO surrogate modeling, we hope to make

predictions for the unlabeled or not-evaluated

points in the hyperparameter space based on

the information of labeled or evaluated points.

If we pre-define the set of all potential points,

then this becomes highly related to semi-

supervised learning. From this point of view,

we propose GBSSL equipped with suitable

acquisition functions as a new SMBO method

for searching over a grid of representative

hyperparameter configurations.

5.2.1 Graph-Based Regression

Suppose we have a graph G = (V,E)
with nodes V corresponding to n points, of

which L denotes the set of labeled points

{(λ1, f(1)), · · · , (λl, f(l))}, where f(i) is short

for f(λi), and U denotes the set of unlabeled

points {λl+1, · · · ,λl+u}, where n = l + u. The

edges E are represented by a n×n weight matrix

W . For instance, W can be given as the radial

basis function (RBF):

wij = exp

(

−
1

2σ2

H
∑

d=1

(λid − λjd)
2

)

. (4)

Note that G is not necessarily fully connected; in

practice, kNN graphs with a small k turn out to

perform well, where nodes i, j are connected if i

is in j’s k-nearest-neighborhood or vice versa.12

Because closer points are assumed to have

similar labels, we define the energy function as:

E(f) =
1

2

∑

i,j

wij(f(i)− f(j))2, (5)

and we constrain f(i), i ∈ L or fL to be true labels

and aim to find f(i), i ∈ U or fU that minimizes

the energy.

We define a diagonal matrix D, where

Dii =
∑

j Wij and the combinatorial Laplacian

∆ = D −W , Equation (5) can then be rewritten

to E(f) = fT∆f . If we partition the Laplacian

matrix into blocks:

∆ =

[

∆LL ∆LU

∆UL ∆UU

]

, (6)

12In experiments, based on initial tuning, we set kNN so

that each point has on average n

7 neighbors.

we can predict the f() values for unlabeled

points by:

fU = −∆−1UU∆ULfL. (7)

5.2.2 Expected Influence (EIF)

We propose a novel acquisition function called

expected influence that exploits the graph

structure. The idea is to query the point such that,

if its f() is observed, has the highest potential to

change the f() of all other points as we re-run

label propagation through the graph.

We first scale the labels on the graph f(i) ∈ R
to be between 0 or 1. The best labeled point is set

to 1; for the other labeled points, we first compute

the probability that a random walk starting at

1 reaches it, then set the label to be 1 if the

probability is larger than 0.5 and 0 otherwise.

If we were to query an unlabeled point k,

there are two scenarios: Its label is either 1 with

probability f(k) or 0 with probability 1−f(k). For

each scenario, we then consider including k as a

newly added ‘‘labeled’’ point and re-running label

propagation. f+(λk,1)(i) are the new predictions

for points i in the scenario where k is added

with label 1. If k is an influencer in the positive

direction, this means that many points i will

now have large f+(λk,1)(i); otherwise, f+(λk,1)(i)
might be small on average in magnitude. On the

other hand, suppose we add k with label 0 and run

label propagation again to obtain new predictions

f+(λk,0)(i). If k is an influencer in the negative

direction, this means that f+(λk,0)(i) will be small

(or conversely 1− f+(λk,0)(i) will be large).

We can now define an influence score and

have the acquisition function seeking point p that

maximizes the following:

aEIF (λk) = (1− f(k))
n
∑

i=1

(1− f+(λk,0)(i))

+f(k)

n
∑

i=1

f+(λk,1)(i) (8)

Intuitively, we try adding each unlabeled point as

either a desirable point (label 1) or undesirable

point (0). We measure whether this addition

changes the result of GB regression, and finally

query the hyperparameter that is expected to cause

the most significant change.

5.3 BO vs. GB

There is a connection between the BO and GB

due to the link between GPs and graphs. The

400

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



Algorithm 1: Multiobjective SMBO

Input : Initial seeds {λinit}, Budget B

Output: Pareto-front approximation P

1 L← {· · · (λinit, F (λinit)) · · · }
2 while b <= B do

3 P ← Compute the Pareto front of L

4 Fit surrogate models f̂ 1, · · · , f̂J on L

5 Select a new point λp based on an infill

criterion and surrogate model predictions

6 L← L ∪ {(λp, F (λp))}

7 end

8 return P

GB method defines a Gaussian random field on

the graph, which is a multivariate Gaussian distri-

bution on the nodes. This is equivalent to ‘‘finite

set’’ GPs. Zhu (2005) showed that the kernel

matrix K of the finite set GP is equivalent to the

inverse of a function of the graph Laplacian ∆,

that is, K = (2β(∆ + I
σ2 ))

−113. The difference
between the finite set GP and GP is that the

kernel matrix of the former is defined on L ∪ U ,

while the latter is defined on Λ. As a semi-
supervised method, the label propagation rule of

GB (Equation (7)) shows that all the nodes on the

graph contribute to the prediction of a single unla-

beled node, whereas for GP, the posterior predic-

tive distribution of a new point does not depend on

other unlabeled points as shown by Equation (1).
The main advantage of GB is that it offers flex-

ibility to build graphs over the search space. For

instance, one can build a graph with configura-

tions from different model architectures, for exam-

ple, RNN, CNN, and Transformers. Nodes of the

same architecture might gather into a cluster, and

clusters can be connected with each other. One

can also manipulate the edge weights by manually

defined heuristics. One example of such rules

could be Euclidean distance scaled by hyper-

parameter importance. We leave this as future

work.
The theoretical caveat of the GB method is that

it is restricted to a discrete search space defined

by a graph. If a dense grid is desired to mimic

a continuous search space, increasing time and

space complexity would make it a less efficient

method.

5.4 Multiobjective Optimization

For multiobjective optimization, we can use

the same surrogate models to estimate each f̂ j

independently; but we need a new acquisition

13β and σ are adjustable parameters.

function that considers the Pareto front. Various
methods have been proposed (Zitzler and Thiele,

1998; Ponweiser et al., 2008; Picheny, 2015; Shah

and Ghahramani, 2016; Svenson and Santner,

2016). Here, we adopt the expected hypervolume

improvement (EHVI) method (Emmerich et al.,

2011), which is a generalization of EI. EHVI

as an infill criterion and can be combined with

different surrogate models. Algorithm 1 provides

pseudo-code for the framework.

6 Experiments and Results

We evaluate HPO methods on six NMT tasks with

the provided benchmark dataset and report their

performance measured by three runtime-based

assessment metrics mentioned in Section 4. The

code base is provided to ensure reproducibility.14

6.1 Single-Objective Optimization

For single-objective optimization, our goal is to

find a hyperparameter configuration giving the

highest BLEU score over a predefined grid.

6.1.1 Experimental Comparison

We run the comparison with two surrogate models,

two kernels,15 and two acquisition functions,

leading to the following HPO systems, where

all the GB systems are introduced by this work:

• RS: random search (Bergstra and Bengio,

2012), which uniformly samples hyperpa-

rameter configurations at random over the

grid.

• BO EI M: GP-based BO with Matérn52

covariance function and expected improve-

ment as acquisition function.

• BO EI R: GP-based BO with RBF kernel

and EI as acquisition function.

• GB EI M: GB with Matérn52 kernel and EI

as acquisition function.16

14https://github.com/Este1le/gbopt.
15We choose Matérn52 and RBF kernel because they

exhibit different properties and are both frequently used in

literature. As shown in Rasmussen (2003), a parameter ν

of the Matérn class of covariance functions can affect the

smoothness of the functions drawn from GP. For ν = 1
2 , the

process becomes very rough, and for ν →∞, the covariance

function converges to RBF kernel.
16We can make an equivalence between the covariance

matrix in multivariate Gaussian distribution and the inverse

of a function of the graph Laplacian ∆ (see Section 5.3 for

details), so EI can also be applied to GB models.

401

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024

https://github.com/Este1le/gbopt


zh-en ru-en ja-en

ftb ftc fb ftb ftc fb ftb ftc fb

RS 61±34 14±11 0.26±0.25 79±47 20±17 0.42±0.29 71±43 16±15 0.40±0.24

BO EI M 29±19 13±9 0.24±0.24 41±19 26±17 0.51±0.36 27±17 16±15 0.39±0.45

BO EI R 24±15 11±8 0.22±0.26 40±26 20±13 0.44±0.37 20±11 13±9 0.33±0.44

GB EI M 84±15 13±8 0.35±0.21 50±34 18±17 0.35±0.25 23±7 6±3 0.14±0.11

GB EI R 86±15 12±7 0.33±0.20 51±32 18±17 0.35±0.28 21±6 6±3 0.10±0.12

GB EIF M 19±21 8±5 0.11±0.17 32±18 22±13 0.46±0.31 13±4 6±2 0.01±0.04

GB EIF R 13±20 6±4 0.06±0.15 28±17 17±12 0.33±0.30 13±3 6±2 0.01±0.05

en-ja sw-en so-en

ftb ftc fb ftb ftc fb ftb ftc fb

RS 71±46 12±10 0.71±0.37 334±201 186±152 2.45±0.97 301±161 39±39 0.63±0.32

BO EI M 60±29 15±17 0.86±0.60 33±17 29±17 1.60±1.41 65±62 19±21 0.41±0.36

BO EI R 62±36 13±12 0.79±0.58 55±47 33±24 1.42±1.33 52±70 13±11 0.24±0.30

GB EI M 22±20 11±11 0.42±0.57 63±37 62±36 3.56±0.95 187±99 61±28 1.17±0.44

GB EI R 24±21 13±12 0.47±0.59 56±26 55±26 3.39±0.95 201±104 62±29 1.16±0.44

GB EIF M 47±22 9±7 0.63±0.32 58±24 57±24 3.13±0.51 42±30 26±8 0.48±0.13

GB EIF R 45±22 10±7 0.69±0.39 59±25 58±25 3.15±0.52 42±30 28±7 0.49±0.12

Table 3: Evaluation on NMT models trained with different language pairs for single-objective

(BLEU) optimization. Results are averaged over 100 trials and standard deviations are also reported.

Fixed-target best (ftb) and fixed-target close (ftc) are measured by number of model evaluations, and

fixed-budget (fb) is measured by BLEU difference. For ftc, the tolerance of performance degradation

is set to 0.5 BLEU.17 For fb, the runtime budget is set to 20.18

• GB EI R: GB with RBF kernel and EI.

• GB EIF M: GB with Matérn52 kernel and

expected influence as acquisition function.

• GB EIF R: GB with RBF and EIF.

We use the George library (Ambikasaran et al.,

2014) for GP implementation. For all the methods,

configurations are sampled without replacement.

6.1.2 Results

Results for single-objective optimization are

summarized in Table 3:

• RS always needs to explore roughly half of

all the NMT models to get the best one (ftb).

• The effectiveness of BO is confirmed: On sw-

en, BO EI M only takes 10% of the runtime

used by RS to achieve the optima.

• For ftb, the best GB outperforms the best BO

on four of the six datasets: on en-ja, GB EI M

reduces the ftb runtime of BO EI M by 38.

GB EIF often works better than GB EI.

• Matérn kernel and RBF kernel are almost

equally good for both BO and GB.

17Except for en-ja, where tolerance is set to 1 BLEU,

because BLEU difference between top two models is > 0.5.
18Including three initial evaluations.

• Adjusting initialization can result in a

noticeable variance on performance. We

suggest that researchers experiment with

enough random trials when evaluating HPO

systems.

6.2 Multiobjective Optimization

We now show benchmarks for multiobjective

optimization. Our goal is to search for

configurations achieving higher BLEU and less

decoding time.

6.2.1 Experimental Comparison

We run the comparison on the following systems,

where GB systems are introduced by this work:

• RS: random search, uniformly samples the

configurations at random.

• BO M: GP-based BO equipped with Matérn

kernel and EHVI as the infill criterion.

• BO R: GP-based BO with RBF kernel and

EHVI.

• GB M: GB equipped with Matérn kernel and

EHVI as the infill criterion.

• GB R: GB with RBF kernel and EHVI.

402

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



zh-en ru-en ja-en

fto fta (J=3) fbp (B=50) fto fta (J=4) fbp (B=50) fto fta (J=5) fbp (B=50)

RS 30±24 88±22 1.3±0.8 33±26 139±28 1.3±0.9 21±18 129±20 1.7±1.0

BO M 24±16 81±16 1.7±0.7 16±14 80±26 2.4±0.9 17±13 77±28 3.3±1.3

BO R 20±13 75±15 1.8±0.5 17±15 84±32 2.4±1.0 18±14 94±32 2.8±1.2

GB M 24±16 85±16 1.8±0.6 17±14 102±30 1.9±0.9 16±12 103±21 2.4±1.1

GB R 24±15 90±12 1.7±0.6 17±12 103±30 2.0±0.9 19±12 107±20 2.2±1.0

en-ja sw-en so-en

fto fta (J=8) fbp (B=50) fto fta (J=14) fbp (B=200) fto fta (J=7) fbp (B=200)

RS 17±16 150±17 2.5±1.4 54±51 719±47 3.4±1.7 88±73 534±55 2.1±1.3

BO M 15±10 100±34 4.6±1.7 26±20 344±201 12.0±2.8 30±21 321±113 5.1±1.2

BO R 17±13 93±30 4.3±2.0 28±27 454±153 10.0±2.2 31±25 399±129 4.7±1.4

GB M 17±13 121±28 4.0±1.5 59±75 469±198 7.8±4.3 61±63 447±99 2.9±1.4

GB R 17±14 119±24 3.6±1.5 58±75 509±193 7.4±4.1 66±58 426±102 2.9±1.4

Table 4: Evaluation on NMT models trained with different language pairs for multiobjective (BLEU &

decoding time) optimization. Fixed-target one (fto) and fixed-target all (fta) are measured by number

of model evaluations, and fixed-budget (fbp) is measured by number of Pareto-optimal points. J is the

size of the true Pareto set and B is the runtime budget.19

6.2.2 Results

The multiobjective optimization evaluation results

are summarized in Table 4:

• RS is a bad choice for multiobjective

optimization, if one aims to quickly collect

as many Pareto-optimal configurations as

possible: To get all the true optima, RS

usually needs to go through the whole search

space (fta), and with fixed budget it obtains

much fewer Pareto points than other methods

(fbp).

• BO is generally superior across datasets. On

sw-en, it only spends less than half of the

time that RS takes to get the Pareto set (344

vs. 719), and can find 8.6 more Pareto points

than RS with 200 NMT models evaluated.

• GB provides comparable performance as BO

on four datasets, whereas on sw-en and so-en,

BO noticeably outperforms GB, which might

not be a perfect solution for a multiobjective

task.

7 Analysis

7.1 HPO Algorithm Behavior

Section 6 shows how to rigorously compare HPO

methods based on various performance metrics.

Here we illustrate examples of how to obtain

deeper insights into HPO algorithm behavior using

the table-lookup framework.

19Budget is adjusted based on the size of search space.

For single-objective optimization, we compare

the best BLEU and mean squared error (MSE),

which is the averaged squared difference between

ground-truth BLEU and predictions, achieved by

different HPO methods across time. We can see

from Figure 6 (left) that BO and GB converge

much faster than RS, and GB is superior over

time. This could be partly explained by Figure 6

(right), GB can already fit the data well in the

beginning, while BO starts from a much larger

MSE and decreases gradually.

For multiobjective optimization, we show the

evolution of Pareto-optimal fronts in Figure 7.

There is a trend that Pareto fronts are moving

towards the lower right corner at each iteration,

verifying the effectiveness of our HPO methods.

7.2 Effect of Random Initialization

NMT training might not be deterministic due to the

random initialization of model parameters. All the

experimental results so far are obtained by a single

run using one random seed. In order to explore

the variance of the model performance induced by

initialization effects, we fix the hyperparameter

configurations and train models initialized with

various random seeds. Specifically, we select

five hyperparameter configurations,20 and re-

trained them for additional five times each with

different random initializations. We did this for

two datasets: the low-resource sw-en task and the

larger WMT2019 ja-en task.

20Four of these are randomly selected. We also include the

configuration that achieved the best BLEU in Table 2.

403

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



Figure 6: Left: Best BLEU found by different HPO methods over time on ja-en NMT models. Right: Mean squared

error achieved by different HPO methods over time on ja-en NMT models. We plot the median and the 25th and

75th quantile across 100 independent runs.

Figure 7: Pareto-front approximation during multiobjective optimization using BO M and GB M on ru-en. ‘‘Step’’

is the number of evaluated MT models. Gray circles form the Pareto set of initial seeds. In this example, all three

initial seeds happen to be Pareto points. Gold stars are the Pareto solutions of the dataset. Lower-right corner is

better.

The results on ja-en and sw-en are shown in

Figure 8. The variance of performance is kept

in a small range in most cases and the ranking

of configurations remains about the same when

different random seeds are applied. Based on

this observation, we think that it is a reasonable

strategy to use a single run to build table-lookup

datasets; but at the same time it should be

understood that the BLEU scores in the lookup

table are only approximations. We note that there

can be a few cases where variance is large,

and this might be best addressed by inventing

HPO methods that explicitly accounts for such

uncertainty.

8 Related Work

To alleviate the computational burden for bench-

marking HPO methods and to improve research

Figure 8: BLEU of ja-en and sw-en models trained with

six random seeds. Circles with different colors stand

for different random seeds.

reproducibility, several studies have explored the

table-lookup framework. Klein and Hutter (2019)

published a mix of datasets focusing on feed

forward neural networks. Ying et al. (2019)

released a dataset of convolutional architectures

for image classification problems. To the best of

our knowledge, this work is the first that focuses

on NMT and transformer models.

404

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



One challenge with table-lookup is that

sufficient coverage of the hyperparameter grid

is assumed. Eggensperger et al. (2015) and Klein

et al. (2019) propose using a predictive meta-

model trained on a table-lookup benchmark to

approximate hyperparameters that are not in the

table. This is an interesting avenue for future work.

Studies on HPO for NMT are scarce. Qin et al.

(2017) propose an evolution strategy–based HPO

method for NMT. So et al. (2019) apply NAS

to Transformer on NMT tasks. There is also

work on empirically exploring hyperparameters

and architectures of NMT systems (Bahar et al.,

2017; Britz et al., 2017; Lim et al., 2018), though

the focus is on finding general best-practice

configurations. This differs from the goal of HPO,

which aims to find the best configuration specific

to a given dataset.

9 Conclusions

In this paper, we presented a benchmark dataset for

hyperparameter optimization of neural machine

translation systems. We provided multiple

evaluation protocols and analysis approaches

for comparing HPO methods. We benchmarked

Bayesian optimization and a novel graph-based

semi-supervised learning method on the dataset

for both single-objective and multiobjective

optimization. Our hope is that this kind of dataset

will facilitate reproducible research and rigorous

evaluation of HPO for complex and expensive

models.

Acknowledgments

This work is supported in part by an Amazon

Research Award and an IARPA MATERIAL

grant. We are especially grateful to Michael

Denkowski for helpful discussions and feedback

throughout the project.

References

Sivaram Ambikasaran, Daniel Foreman-Mackey,

Leslie Greengard, David W. Hogg, and Michael

O’Neil. 2014. Fast direct methods for gaussian

processes. arXiv preprint arXiv:1403.6015.

Parnia Bahar, Tamer Alkhouli, Jan-Thorsten

Peter, Christopher Jan-Steffen Brix, and

Hermann Ney. 2017. Empirical investigation

of optimization algorithms in neural machine

translation. The Prague Bulletin of Mathemati-

cal Linguistics, 108(1):13–25.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by

jointly learning to align and translate. In Pro-

ceedings of the 3rd International Conference

on Learning Representations.

Rémi Bardenet, Mátyás Brendel, Balázs Kégl,

and Michele Sebag. 2013. Collaborative

hyperparameter tuning. In Proceedings of the

30th International Conference on Machine

Learning.

Daniel Beck, Adrià de Gispert, Gonzalo Iglesias,

Aurelien Waite, and Bill Byrne. 2016. Speed-

constrained tuning for statistical machine

translation using Bayesian optimization. arXiv

preprint arXiv:1604.05073.

James Bergstra and Yoshua Bengio. 2012.

Random search for hyper-parameter optimiza-

tion. Journal of Machine Learning Research,

13(Feb):281–305.

James S. Bergstra, Rémi Bardenet, Yoshua

Bengio, and Balázs Kégl. 2011. Algorithms for

hyper-parameter optimization. In Proceedings

of the 25th Advances in Neural Information

Processing Systems.

Denny Britz, Anna Goldie, Minh-Thang Luong,

and Quoc Le. 2017. Massive exploration of

neural machine translation architectures. arXiv

preprint arXiv:1703.03906.

Eric Brochu, Vlad M. Cora, and Nando De

Freitas. 2010. A tutorial on Bayesian optimi-

zation of expensive cost functions, with

application to active user modeling and

hierarchical reinforcement learning. arXiv

preprint arXiv:1012.2599.

Han Cai, Tianyao Chen, Weinan Zhang, Yong

Yu, and Jun Wang. 2018. Efficient architecture

search by network transformation. In Thirty-

Second AAAI Conference on Artificial

Intelligence.

Kevin Duh. 2018. The multitarget TED talks task.

http://www.cs.jhu.edu/∼kevinduh/
a/multitarget-tedtalks/.

405

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024

http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/


Russell C. Eberhart and Yuhui Shi. 1998.

Comparison between genetic algorithms and

particle swarm optimization. In International

Conference on Evolutionary Programming.

Katharina Eggensperger, Frank Hutter, Holger

Hoos, and Kevin Leyton-Brown. 2015. Effi-

cient benchmarking of hyperparameter optimiz-

ers via surrogates. In Proceedings of the 29th

AAAI Conference on Artificial Intelligence.

Michael T. M. Emmerich, André H. Deutz, and

Jan Willem Klinkenberg. 2011. Hypervolume-

based expected improvement: Monotonicity

properties and exact computation. In 2011 IEEE

Congress of Evolutionary Computation (CEC).

Matthias Feurer and Frank Hutter. 2019.

Hyperparameter optimization. In Automated

Machine Learning, pages 3–33. Springer.

Matthias Feurer, Jost Tobias Springenberg, and

Frank Hutter. 2015. Initializing Bayesian

hyperparameter optimization via meta-learning.

In Twenty-Ninth AAAI Conference on Artificial

Intelligence.

Peter I. Frazier. 2018. A tutorial on Bayesian

optimization. arXiv preprint arXiv:1807.02811.

Jonas Gehring, Michael Auli, David Grangier,

Denis Yarats, and Yann N. Dauphin. 2017.

Convolutional sequence to sequence learning.

In Proceedings of the 34th International

Conference on Machine Learning-Volume 70.

Parke Godfrey, Ryan Shipley, and Jarek Gryz.

2007. Algorithms and analyses for maximal

vector computation. The VLDB Journal—The

International Journal on Very Large Data

Bases, 16(1):5–28.

Nikolaus Hansen, Anne Auger, Dimo Brockhoff,

Dejan Tušar, and Tea Tušar. 2016. Coco:

Performance assessment. arXiv preprint

arXiv:1605.03560.

Felix Hieber, Tobias Domhan, Michael

Denkowski, David Vilar, Artem Sokolov, Ann

Clifton, and Matt Post. 2017. Sockeye: A toolkit

for neural machine translation. arXiv preprint

arXiv:1712.05690.

Frank Hutter, Holger H. Hoos, and Kevin

Leyton-Brown. 2011. Sequential model-based

optimization for general algorithm configura-

tion. In Proceedings of the 5th International

Conference on Learning and Intelligent Opti-

mization.

Donald R. Jones, Matthias Schonlau, and William

J. Welch. 1998. Efficient global optimization

of expensive black-box functions. Journal of

Global Optimization, 13(4):455–492.

Aaron Klein, Zhenwen Dai, Frank Hutter, Neil

Lawrence, and Javier Gonzalez. 2019. Meta-

surrogate benchmarking for hyperparameter

optimization. arXiv preprint arXiv:1905.12982.

Aaron Klein and Frank Hutter. 2019. Tabular

benchmarks for joint architecture and hyper-

parameter optimization. arXiv preprint arXiv:

1905.04970.

Liam Li and Ameet Talwalkar. 2019. Random

search and reproducibility for neural architec-

ture search. In Proceedings of the Conference

on Uncertainty in Artificial Intelligence (UAI).

Xian Li, Paul Michel, Antonios Anastasopoulos,

Yonatan Belinkov, Nadir Durrani, Orhan Firat,

Philipp Koehn, Graham Neubig, Juan Pino,

and Hassan Sajjad. 2019. Findings of the first

shared task on machine translation robustness.

In Proceedings of the Fourth Conference on

Machine Translation.

Robert Lim, Kenneth Heafield, Hieu Hoang,

Mark Briers, and Allen Malony. 2018. Explor-

ing hyper-parameter optimization for neural

machine translation on gpu architectures. arXiv

preprint arXiv:1805.02094.

Chenxi Liu, Barret Zoph, Maxim Neumann,

Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,

Alan Yuille, Jonathan Huang, and Kevin

Murphy. 2018a. Progressive neural architecture

search. In Proceedings of the European

Conference on Computer Vision (ECCV).

Hanxiao Liu, Karen Simonyan, Oriol Vinyals,

Chrisantha Fernando, and Koray Kavukcuoglu.

2018b. Hierarchical representations for efficient

architecture search. In International Conference

on Learning Representations.

Gang Luo. 2016. A review of automatic selection

methods for machine learning algorithms and

hyper-parameter values. Network Modeling

406

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



Analysis in Health Informatics and Bioinfor-

matics, 5(1):18.

Yishu Miao, Ziyu Wang, and Phil Blunsom. 2014.

Bayesian optimisation for machine translation.

arXiv preprint arXiv:1412.7180.

Kishore Papineni, Salim Roukos, Todd Ward,

and Wei-Jing Zhu. 2002. Blue: a method for

automatic evaluation of machine translation. In

Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics.

Victor Picheny. 2015. Multiobjective optimization

using gaussian process emulators via stepwise

uncertainty reduction. Statistics and Comput-

ing, 25(6):1265–1280.

Wolfgang Ponweiser, Tobias Wagner, Dirk

Biermann, and Markus Vincze. 2008. Multi-

objective optimization on a limited budget

of evaluations using model-assisted S-metric

selection. In International Conference on

Parallel Problem Solving from Nature,

pages 784–794. Springer.

Hao Qin, Takahiro Shinozaki, and Kevin Duh.

2017. Evolution strategy based automatic

tuning of neural machine translation systems.

In Proceedings of the 14th International

Workshop on Spoken Language Translation.

Carl Edward Rasmussen. 2003. Gaussian

processes in machine learning. In Summer

School on Machine Learning, pages 63–71.

Springer.

Esteban Real, Alok Aggarwal, Yanping Huang,

and Quoc V. Le. 2019. Regularized evolution

for image classifier architecture search. In

Proceedings of the AAAI Conference on

Artificial Intelligence.

Matthias Schonlau, William J. Welch, and

Donald R. Jones. 1998. Global versus local

search in constrained optimization of computer

models. Lecture Notes-Monograph Series

pages 11–25.

Rico Sennrich, Barry Haddow, and Alexandra

Birch. 2016. Neural machine translation of rare

words with subword units. In Proceedings of

the 54th Annual Meeting of the Association for

Computational Linguistics.

Amar Shah and Zoubin Ghahramani. 2016. Pareto

frontier learning with expensive correlated

objectives. In International Conference on

Machine Learning, pages 1919–1927.

Bobak Shahriari, Kevin Swersky, Ziyu Wang,

Ryan P. Adams, and Nando De Freitas. 2015.

Taking the human out of the loop: A review

of Bayesian optimization. Proceedings of the

IEEE, 104(1):148–175.

Dan Simon. 2013. Evolutionary optimization

algorithms. John Wiley & Sons.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan

Kiros, Nadathur Satish, Narayanan Sundaram,

Mostofa Patwary, M.R. Prabhat, and Ryan

Adams. 2015. Scalable Bayesian optimization

using deep neural networks. In Proceedings of

the 32nd International Conference on Machine

Learning.

David So, Quoc Le, and Chen Liang. 2019.

The evolved transformer. In Proceedings of

the 36th International Conference on Machine

Learning.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.

2014. Sequence to sequence learning with

neural networks. In Proceedings of the 28th

Advances in Neural Information Processing

Systems.

Joshua Svenson and Thomas Santner. 2016.

Multiobjective optimization of expensive-

to-evaluate deterministic computer simulator

models. Computational Statistics & Data

Analysis, 94:250–264.

Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017.

Attention is all you need. In Proceedings

of the 31st Advances in Neural Information

Processing Systems.

Chris Ying, Aaron Klein, Esteban Real, Eric

Christiansen, Kevin Murphy, and Frank Hutter.

2019. Nas-bench-101: Towards reproducible

neural architecture search. arXiv preprint

arXiv:1902.09635.

Xiaojin Zhu. 2005. Semi-supervised learning with

graphs. Ph.D. Thesis.

407

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024



Xiaojin Zhu, Zoubin Ghahramani, and John D.

Lafferty. 2003. Semi-supervised learning using
gaussian fields and harmonic functions.

In Proceedings of the 20th International

Conference on Machine Learning (ICML-03).

Eckart Zitzler and Lothar Thiele. 1998.

Multiobjective optimization using evolutionary

algorithms—a comparative case study. In

International Conference on Parallel Problem

Solving from Nature.

Barret Zoph and Quoc V. Le. 2016. Neural

architecture search with reinforcement learning.

arXiv preprint arXiv:1611.01578.

408

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00322 by guest on 28 March 2024


	Introduction
	HPO Problem Definition
	Table-Lookup HPO Datasets
	Table-Lookup Framework
	HPO Algorithm Selection/Development
	MT Data and Setup
	Objectives: Accuracy and Cost
	Hyperparameter Importance/Correlation
	Reproducible and Efficient Benchmarks

	Evaluation Protocols
	Single-Objective Evaluation Metrics
	Multiobjective Evaluation Metrics
	Repeated Trials

	Methods
	Bayesian Optimization (BO)
	Gaussian Process Regression
	Expected Improvement (EI)

	Graph-Based SMBO (GB)
	Graph-Based Regression
	Expected Influence (EIF)

	BO vs. GB
	Multiobjective Optimization

	Experiments and Results
	Single-Objective Optimization
	Experimental Comparison
	Results

	Multiobjective Optimization
	Experimental Comparison
	Results


	Analysis
	HPO Algorithm Behavior
	Effect of Random Initialization

	Related Work
	Conclusions

