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Abstract
We focus on graph-to-sequence learning,
which can be framed as transducing graph
structures to sequences for text generation.
To capture structural information associated
with graphs, we investigate the problem of
encoding graphs using graph convolutional
networks (GCNs). Unlike various existing
approaches where shallow architectures were
used for capturing local structural information
only, we introduce a dense connection strategy,
proposing a novel Densely Connected Graph
Convolutional Network (DCGCN). Such a
deep architecture is able to integrate both
local and non-local features to learn a better
structural representation of a graph. Our model
outperforms the state-of-the-art neural models
significantly on AMR-to-text generation and
syntax-based neural machine translation.

1 Introduction

Graphs play an important role in natural language
processing (NLP) as they are able to capture richer
structural information than sequences and trees.
Generally, semantics of sentences can be encoded
as graphs. For example, the abstract meaning
representation (AMR) (Banarescu et al., 2013) is
a directed, labeled graph as shown in Figure 1,
where nodes in the graph denote semantic concepts
and edges denote relations between concepts. Such
graph representations can capture rich semantic-
level structural information, and are attractive
representations useful for semantics-related tasks
such as semantic parsing (Guo and Lu, 2018) and
natural language generation (Beck et al., 2018). In
this paper, we focus on the graph-to-sequence
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learning tasks, where we aim to learn repre-
sentations for graphs that are useful for text
generation.

Graph convolutional networks (GCNs) (Kipf
and Welling, 2017) are variants of convolutional
neural networks (CNNs) that operate directly on
graphs, where the representation of each node is
iteratively updated based on those of its adja-
cent nodes in the graph through an information
propagation scheme. For example, the first layer
of GCNs can only capture the graph’s adjacency
information between immediate neighbors, while
with the second layer one will be able to cap-
ture second-order proximity information (neigh-
borhood information two hops away from one
node) as shown in Figure 1. Formally, L layers
will be needed in order to capture neighborhood
information that is L hops away.

GCNs have been successfully applied to many
NLP tasks (Bastings et al., 2017; Zhang et al.,
2018b). Interestingly, although deeper GCNs with
more layers will be able to capture richer neigh-
borhood information of a graph, empirically it
has been observed that the best performance is
achieved with a 2-layer model (Li et al., 2018).

Therefore, recent efforts that leverage recurrence-
based graph neural networks have been explored
as the alternatives to encode the structural infor-
mation of graphs. Examples include graph-state
long short-term memory (LSTM) networks (Song
et al., 2018) and gated graph neural networks
(GGNNs) (Beck et al., 2018). Deep architectures
based on such recurrence-based models have been
successfully built for tasks such as language gener-
ation, where rich neighborhood information cap-
tured was shown useful.

Compared with recurrent neural networks, con-
volutional architectures are highly parallelizable
and are more amenable to hardware acceleration
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Figure 1: A 3-layer densely connected graph convo-
lutional network. The example AMR graph here corre-
sponds to the sentence ‘‘You guys know what I mean.’’
Every layer encodes information about immediate
neighbors and 3 layers are needed to capture third-
order neighborhood information (nodes that are 3 hops
away from the current node). Each layer concatenates
all preceding outputs as the input.

(Gehring et al., 2017). It is therefore worthwhile
to explore the possibility of applying deeper
GCNs that are able to capture more non-local
information associated with the graph for graph-
to-sequence learning. Prior efforts have tried to
train deep GCNs by incorporating residual con-
nections (Bastings et al., 2017). Xu et al. (2018)
show that vanilla residual connections proposed
by He et al. (2016) are not effective for graph
neural networks. They next attempt to resolve this
issue by adding additional recurrent layers on top
of graph convolutional layers. However, they are
still confined to relatively shallow GCNs archi-
tectures (at most 6 layers in their experiments),
which may not be able to capture the rich non-
local interactions for larger graphs.

In this paper, to better address the issue of
learning deeper GCNs, we introduce dense con-
nectivity to GCNs and propose the novel densely
connected graph convolutional networks (DCGCNs),
inspired by DenseNets (Huang et al., 2017) that
distill insights from residual connections. The
dense connectivity strategy is illustrated in Figure 1
schematically. Direct connections are introduced
from any layer to all its preceding layers. For
example, the third layer receives the outputs of
the first layer and the second layer, capturing the
first-order, the second-order, and the third-order
neighborhood information. With the help of dense
connections, we are able to train multi-layer GCN
models with a large depth, allowing rich local and
non-local information to be captured for learning

a better graph representation than those learned
from the shallower GCN models.

Experiments show that our model is able to
achieve better performance for graph-to-sequence
learning tasks. For the AMR-to-text generation
task, our model surpasses the current state-of-
the-art neural models trained on LDC2015E86
and LDC2017T10 by 2 and 4.3 BLEU points,
respectively. For the syntax-based neural machine
translation task, our model is also consistently bet-
ter than others, showing the effectiveness of the
model on a large training set. Our code is avail-
able at https://github.com/Cartus/
DCGCN.1

2 Densely Connected GCNs

In this section, we will present the basic com-
ponents used for constructing our DCGCN model.

2.1 GCNs

GCNs are neural networks that operate directly
on graph structures (Kipf and Welling, 2017).
Here we mathematically illustrate how multi-layer
GCNs work on an undirected graph G = (V , E),
where V and E are the set of nodes and edges,
respectively. The convolution computation for
node v at the l-th layer, which takes the input
feature representation h(l−1) as input and outputs
the induced representation h

(l)
v , can be defined

as

h(l)
v = ρ

( ∑
u∈N (v)

W (l)h(l−1)
u + b(l)

)
(1)

where W (l) is the weight matrix, b(l) is the bias
vector, N (v) is the set of one-hop neighbors of
node v, and ρ is an activation function (e.g., RELU
[Nair and Hinton, 2010]). h(0)

v is the initial input
xv, where xv ∈ R

d and d is the input feature
dimension.

GCNs with Residual Connections. Bastings
et al. (2017) integrate residual connections (He
et al., 2016) into GCNs to help information
propagation. Specifically, each node is updated

1Our implementation is based on MXNET (Chen et al.,
2015) and the Sockeye (Felix et al., 2017) toolkit.
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according to Equation (1) first and then the result-
ing representation is combined with the node’s
representation from the last iteration:

h(l)
v = ρ

( ∑
u∈N (v)

W (l)h(l−1)
u +b(l)

)
+h(l−1)

v (2)

GCNs with Layer Aggregations. Xu et al.
(2018) propose layer aggregations for GCNs, in
which the final representation of each node is
computed by combining the node’s representa-
tions from all GCN layers:

hfinal
v = LA(h(l)

v ,h(l−1)
v , . . . . ,h(1)

v ) (3)

where theLA function can be concatenation, max-
pooling, or LSTM-attention operations as defined
in Xu et al. (2018).

2.2 Dense Connectivity
Dense connectivity is the core component of
the proposed DCGCN. With dense connectivity,
node v in the l-th layer not only takes inputs
from h(l−1), but also receives information from
all the preceding layers, as shown in Figure 2.
Mathematically, we first define g(l)

u as the concat-
enation of the initial node representation and the
node representations produced in layers 1, · · · ,
l − 1:

g(l)
u = [xu;h

(1)
u ; . . . ;h(l−1)

u ]. (4)

Such a mechanism allows deeper layers to capture
all previous information to alleviate the problem
discussed in Section 1 in graph neural networks.
Similar strategies are also proposed in previous
work (He et al., 2016; Huang et al., 2017).

While dense connectivity allows training
deeper neural networks, every intermediate layer
is designated to be of very small size, allowing
adding only a small set of feature-maps at each
layer. The final classifier makes predictions based
on all feature-maps, which is called ‘‘collective
knowledge’’ (Huang et al., 2017). Such a strategy
improves the parameter efficiency. In practice, the
dimensions of these small hidden layers dhidden
are decided by the number of layers L and the
input feature dimension d. In DCGCN, we use
dhidden = d/L.

For example, if we have a 3-layer (L = 3)
DCGCN model and input dimension is 300
(d = 300), the hidden dimension of each layer
will be dhidden = d/L = 300/3 = 100. Then

Figure 2: Each DCGCN block has two sub-blocks. Both
of them are densely connected graph convolutional
layers with different numbers of layers. A linear trans-
formation is used between two sub-blocks, followed by
a residual connection.

we concatenate the output of each layer to form
the new representation. We have 3 layers so the
output dimension is 300 (3 × 100). Different
from the GCN model whose hidden dimension is
larger than or equal to the input dimension, the
DCGCN model shrinks the hidden dimension as
the number of layers increases in order to improve
the parameter efficiency similar to DenseNets
(Huang et al., 2017).

Accordingly, we modify the convolution com-
putation of each layer as:

h(l)
v = ρ

( ∑
u∈N (v)

W (l)g(l)
u + b(l)

)
(5)

The column dimension of the weight matrix
increases by dhidden per layer, that is, W (l) ∈
R
dhidden×d(l) , where d(l) = d+ dhidden × (l − 1).

2.3 Graph Attention
Attention mechanisms have become almost a
de facto standard in many sequence-based tasks
(Vaswani et al., 2017). In DCGCNs, we also incor-
porate the self-attention strategy by implicitly
specifying different weights to different nodes in a
neighborhood similar to graph attention networks
(Velickovic et al., 2018).
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In order to perform self-attention on nodes,
attention coefficients are required. The input for
the calculation is a set of vectors, g̃(l) =

{g̃(l)
1 , g̃

(l)
2 , . . . , g̃

(l)
n }, after node-wise feature trans-

formation g̃
(l)
u = W (l)g

(l)
u . As an initial step,

a shared linear projection parameterized by a
weight matrix, Wa ∈ R

dhidden×dhidden , is applied
to nodes in the graph. Attention coefficients can
be computed as:

α
(l)
ij =

exp
(
φ
(
a�[Wag̃

(l)
i ;Wag̃

(l)
j ]

))
∑

k∈Ni
exp

(
φ
(
a�[Wag̃

(l)
i ;Wag̃

(l)
k ]

))
(6)

where a ∈ R
2dhidden is a weight vector, φ is

the activation function (here we use LeakyReLU
[Girshick et al., 2014]). These coefficients are
used to compute a linear combination of the
node representations. Modifying the convolution
computation for attention, we arrive at:

h(l)
v = ρ

( ∑
u∈N (v)

α(l)
vuW

(l)g(l)
u + b(l)

)
(7)

where α
(l)
vu are normalized attention coefficients

computed by the attention mechanism at l-th layer.
Note that these coefficients will not change the
dimension of the output representations.

3 Graph-to-Sequence Model

In the following we will explain the model ar-
chitecture of the graph-to-sequence model. We
leverage DCGCNs as the graph encoder, which
directly models the graph structure without
linearization.

3.1 Graph Encoder
The graph encoder is composed of DCGCN
blocks, as shown in Figure 3. Within each DCGCN
block, we design two types of multi-layer DCGCNs
as two sub-blocks to capture graph structure at
different abstract levels. As Figure 2 shows, in
each block, the first sub-block has n-layers and
the second sub-block hasm-layers. This prototype
shares the same spirit with the usage of two
different-sized filters in DenseNets (Huang et al.,
2017).

Linear Combination Layer. In addition to
densely connected layers, we include a linear

Figure 3: The model concatenates node embeddings
and positional embeddings as inputs. The encoder con-
tains a stack of N identical blocks. The linear trans-
formation layer combines output of all blocks into
hidden representations. These are fed into an attention
mechanism, generating the context vector. The decoder,
a 2-layer LSTM (Hochreiter and Schmidhuber, 1997),
makes predictions based on hidden representations and
the context vector.

combination layer between multi-layer DCGCNs
to filter the representations from different DCGCN
layers, reaching a more expressive representation.
This strategy is inspired by ELMo (Peters et al.,
2018), which combines the hidden states from
different LSTM layers. We also use a residual
connection (He et al., 2016) to incorporate the
initial inputs of multi-layer GCNs into the linear
combination layer, see Figure 3. Formally, the
output of the linear combination layer is defined
as:

hcomb = Wcomb

(
hout + xv

)
+ bcomb (8)

where hout is the output of the densely connected
layers by concatenating outputs from all previous
L layers hout = [h(1); . . . ;h(L)] and hout ∈ R

d.
xv is the input of the DCGCN layer. hout and xv

share the same dimension d. Wcomb ∈ R
d×d is a

weight matrix and bcomb is a bias vector for the
linear transformation. Both Wcomb and bcomb are
different according to different DCGCN layers.
In addition, another linear combination layer is
added to obtain the final representations as shown
in Figure 3.

3.2 Extended Levi Graph
In order to improve the information propagation
process in graph structures such as AMR graphs
and dependency trees, previous researchers
enrich the original input graphs with additional
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transformations. Marcheggiani and Titov (2017)
add reverse edges as well as self-loop edges for
each node to the original graph. This strategy
is similar to the bidirectional recurrent neural
networks (RNNs) (Elman, 1990), which can enjoy
the information propagation from two directions.
Beck et al. (2018) adapt this approach and addi-
tionally transform the directed input graphs into
Levi graphs (Gross et al., 2013). Basically, edges
in the original graphs are turned into additional
nodes in Levi graphs. With this approach, we can
encode the original edge labels and node inputs
in the same way. Specifically, Beck et al. (2018)
define three types of edge labels on the Levi
graph: default, reverse, and self, which refer to
the original edges, the new virtual edges that are
reverse to the original edges, and the self-loop
edges.

Scarselli et al. (2009) add another node that is
connected to all other nodes. Zhang et al. (2018a)
use a global sentence-level node to assemble and
back-distribute information. Motivated by these
works, we propose an extended Levi graph, which
adds a global node in the Levi graph. For every
node x in the original Levi graph, there is a
new edge (global) from the global node to x.
Figure 4 shows an example AMR graph and its
corresponding extended Levi graph. The edge type
vocabulary for the extended Levi graph of the
AMR graph now becomes T = { default, reverse,
self, global}. Our motivations are three-fold. First,
the global node gives each node a global view of
the input graph, which can make each node more
aware of the non-local information. Second, the
global node can serve as a hub to help node
communications, which can facilitate the node
information propagation process. Third, the output
vectors of the global node in the encoder can be
used as the initial states of the decoder, which are
crucial for sequence-to-sequence learning tasks.
Prior efforts average representations of all nodes
as the graph embedding to initialize the decoder.
Instead, we directly use the learned representation
of the global nodes, which captures the infor-
mation from all nodes in the whole graph.

The input to the syntax-based neural machine
translation task is the dependency tree. Unlike
the AMR graph, the sentence contains significant
sequential information. Beck et al. (2018) inject
this information by adding sequential connections
to each token. In our model, we also add for-
ward and backward sequential connections, as

Figure 4: An AMR graph (top) and its corresponding
extended Levi graph (bottom). The extended Levi graph
contains an additional global node and four different
type of edges.

illustrated in Figure 5. Therefore, the edge type
vocabulary for the extended Levi graph of the
dependency tree becomes T = {default, reverse,
self, global, forward, backward}.

Positional encodings about the relative or
absolute position of the tokens have been proved
beneficial for sequence learning (Gehring et al.,
2017). We also include positional encodings
by concatenating them with the learned word
embeddings. The positional encodings are indexed
by integer values representing the minimum dis-
tance from the root node. For example, come-01
in Figure 4 is the root node of the AMR graph, so
its index should be 0, where and is the child node
of come-01, its index is 1. Notice that we denote
the index of the global node as −1.
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Figure 5: A dependency tree and its extended Levi
graph.

3.3 Direction Aggregation

Directionality and edge labels play an important
role in linguistic structures. Information from in-
coming edges, outgoing edges, and self edges
should be treated differently by using separate
weight matrices. Moreover, information from
incoming edges that have different labels should
have different weight matrices, too. Following this
motivation, we incorporate the directionality of an
edge directly in its label. For example, node learn-
01 in Figure 4 has three incoming edges, these
edges have three different types: default (from
node op2), self (from node learn-01), and global
(from node gnode). For the AMR graph we have
four types of edges while for dependency trees
we have six as mentioned in Section 3.2. Thus,
considering different type of edges, we modify the
convolution computation as:

v
(l)
t = ρ

( ∑
u∈N (v)

dir(u,v)=t

α(l)
vuW

(l)
t g(l)

u + b
(l)
t

)
(9)

where dir(u, v) selects the weight matrix and bias
term associated with the edge type t. For example,
in the AMR generation task, there are four edge
types: default, reverse, self, and global. Each type
corresponds to a separate weight matrix and a
separate bias term.

Now we need to aggregate representations
learned from different types of edges. A simple
way to do this is averaging them to get the fi-
nal representations. However, Hamilton et al.
(2017) show that using a mean-based function
to aggregate feature information from different
nodes may not be satisfactory, since informa-
tion from different sources should not be treated
equally. Thus we assign different weights to infor-
mation from different types of edges to integrate
such information. Specifically, we concatenate the
learned representations from all types of edges
and perform a linear transformation, mathemati-
cally represented as:

f([v
(l)
1 ; · · · ;v(l)

T ]) = Wf [v
(l)
1 ; · · · ;v(l)

T ] + bf

(10)
where Wf ∈ R

d
′×dhidden is the weight matrix and

d
′
= T × dhidden. T is the size of the edge type

vocabulary and dhidden is the hidden dimension
in DCGCN layers as described in Section 2.2.
bf ∈ R

dhidden is a bias vector. Finally, the con-
volution computation becomes:

h(l)
v = ρ

(
f([v

(l)
1 ; · · · ;v(l)

T ])
)

(11)

3.4 Decoder
We use an attention-based LSTM decoder
(Bahdanau et al., 2015). The initial state of the
decoder is the representation of the global node
described in Section 3.2. The decoder yields
the natural language sequence by calculating a
sequence of hidden states sequentially. Here we
also include the coverage mechanism (Tu et al.,
2016). Therefore, when generating the t-th token,
the decoder considers five factors: the attention
memory, the word embedding of the (t − 1)-th
token, the previous hidden state of LSTM, the
previous context vector, and the previous coverage
vector.

4 Experiments

4.1 Experimental Setup
We assess the effectiveness of our models on
two typical graph-to-sequence learning tasks,
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Dataset Train Dev Test

AMR15 (LDC2015E86) 16,833 1,368 1,371
AMR17 (LDC2017T10) 36,521 1,368 1,371

English-Czech 181,112 2,656 2,999
English-German 226,822 2,169 2,999

Table 1: The number of sentences in four datasets.

including AMR-to-text generation and syntax-
based neural machine translation (NMT). For
the AMR-to-text generation task, we use two
benchmarks—the LDC2015E86 dataset (AMR15)
and the LDC2017T10 dataset (AMR17). In these
datasets, each instance contains a sentence and
an AMR graph. We follow Konstas et al. (2017)
to apply entity simplification in the preprocessing
steps. We then transform each preprocessed AMR
graph into its extended Levi graph as described
in Section 3.2. For the syntax-based NMT task,
we evaluate our model on both the En-De
and the En-Cs News Commentary v11 dataset
from the WMT16 translation task.2 We parse
English sentences after tokenization to generate
the dependency trees on the source side using
SyntaxNet (Alberti et al., 2017).3 We tokenize
Czech and German using the Moses tokenizer.4

On the target side, we use byte-pair encodings
(Sennrich et al., 2016) with 8,000 merge oper-
ations to obtain subwords. We transform the
labelled dependency trees into their corresponding
extended Levi graphs as described in Section 3.2.
Table 1 shows the statistics of these four datasets.
The AMR-to-text datasets contain about 16 K
∼ 36 K training instances. The NMT datasets
are relatively large, consisting of around 200 K
training instances.

We tune model hyper-parameters using random
layouts based on the results of the development
set. We choose the number of DCGCN blocks
(Block) from {1, 2, 3, 4}. We select the feature
dimension d from {180, 240, 300, 360, 420}. We
do not use pretrained embeddings. The encoder
and the decoder share the training vocabulary.
We adopt Adam (Kingma and Ba, 2015) with an
initial learning rate of 0.0003 as the optimizer. The

2http://www.statmt.org/wmt16/translation-
task.html.

3https://github.com/tensorflow/models/tree/
master/research/syntaxnet.

4https://github.com/moses-smt/mosesdecoder.

Model T #P B C

Seq2SeqB (Beck et al., 2018) S 28,4 M 21.7 49.1
GGNN2Seq (Beck et al., 2018) S 28.3M 23.3 50.4
Seq2SeqB (Beck et al., 2018) E 142M 26.6 52.5
GGNN2Seq (Beck et al., 2018) E 141M 27.5 53.5

DCGCN (ours) S 18.5M 27.6 57.3
E 92.5 M 30.4 59.6

Table 2: Main results on AMR17. #P shows the
model size in terms of parameters; ‘‘S’’ and ‘‘E’’
denote single and ensemble models, respectively.

batch size (Batch) candidates are {16, 20, 24}.
We determine when to stop training based on
the perplexity change in the development set. For
decoding, we use beam search with beam size 10.
Through preliminary experiments, we find that the
combinations (Block = 4, d = 360,Batch = 16)
and (Block = 2, d = 360, Batch = 24) give best
results on AMR and NMT tasks, respectively.
Following previous work, we evaluate the results
in terms of both BLEU (B) scores (Papineni et al.,
2002) and sentence-level CHRF++ (C) scores
(Popovic, 2017; Beck et al., 2018). Particularly,
we use case-insensitive BLEU scores for AMR
and case sensitive BLEU scores for NMT. For
ensemble models, we train five models with
different random seeds and then use Sockeye
(Felix et al., 2017) to perform default ensemble
decoding.

4.2 Main Results on AMR-to-text Generation

We compare the performance of DCGCNs with
the other three kinds of models: (1) sequence-to-
sequence (Seq2Seq) models, which use linearized
graphs as inputs; (2) recurrent graph encoders
(GGNN2Seq, GraphLSTM); (3) models trained
with external resources. For convenience, we denote
the LSTM-based Seq2Seq models of Konstas
et al. (2017) and Beck et al. (2018) as Seq2SeqK
and Seq2SeqB, respectively. GGNN2Seq (Beck
et al., 2018) is the model that leverages GGNNs
as graph encoders.

Table 2 shows the results on AMR17. Our single
model achieves 27.6 BLEU points, which is the
new state-of-the-art result for single models. In
particular, our single DCGCN model consistently
outperforms Seq2Seq models by a significant
margin when trained without external resources.
For example, the single DCGCN model gains
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5.9 more BLEU points than the single models of
Seq2SeqB on AMR17. These results demonstrate
the importance of explicitly capturing the graph
structure in the encoder.

In addition, our single DCGCN model obtains
better results than previous ensemble models. For
example, on AMR17, the single DCGCN model
is 1 BLEU point higher than the ensemble model
of Seq2SeqB. Our model requires substantially
fewer parameters (e.g., the parameter size is only
3/5 and 1/9 of those in GGNN2Seq and Seq2SeqB,
respectively). The ensemble approach based on
combining five DCGCN models initialized with
different random seeds achieves a BLEU score
of 30.4 and a CHRF++ score of 59.6.

Under the same setting, our model also consis-
tently outperforms graph encoders based on
recurrent neural networks or gating mechanisms.
For GGNN2Seq, our single model is 3.3 and
0.1 BLEU points higher than their single and
ensemble models, respectively. We also have
similar observations in terms of CHRF++ scores
for sentence-level evaluations. DCGCN also out-
performs GraphLSTM by 2.0 BLEU points in the
fully supervised setting as shown in Table 3.
Note that GraphLSTM uses char-level neural
representations and pretrained word embeddings,
whereas our model solely relies on word-level
representations with random initializations. This
empirically shows that compared with recurrent
graph encoders, DCGCNs can learn better rep-
resentations for graphs.

Moreover, we compare our results with the
state-of-the-art semi-supervised models on the
AMR15 test set (Table 3), including non-neural
methods such as TSP (Song et al., 2016), PBMT
(Pourdamghani et al., 2016), Tree2Str (Flanigan
et al., 2016), and SNRG (Song et al., 2017). All
these non-neural models train language models on
the whole Gigaword corpus. Our ensemble model
gives 28.2 BLEU points without external data,
which is better than these other methods.

Following Konstas et al. (2017) and Song et al.
(2018), we also evaluate our model using external
Gigaword sentences as training data. We first use
the additional data to pretrain the model, then fine
tune it on the gold data. Using additional 0.1M
data, the single DCGCN model achieves a BLEU
score of 29.0, which is higher than Seq2SeqK
(Konstas et al., 2017) and GraphLSTM (Song
et al., 2018) trained with 0.2M additional data.
When using the same amount of 0.2M data, the

Model External B

Seq2SeqK (Konstas et al., 2017) − 22.0
GraphLSTM (Song et al., 2018) − 23.3

DCGCN(single) − 25.7
DCGCN(ensemble) − 28.2

TSP (Song et al., 2016) ALL 22.4
PBMT (Pourdamghani et al., 2016) ALL 26.9
Tree2Str (Flanigan et al., 2016) ALL 23.0
SNRG (Song et al., 2017) ALL 25.6

Seq2SeqK (Konstas et al., 2017) 0.2M 27.4
GraphLSTM (Song et al., 2018) 0.2M 28.2

DCGCN(single) 0.1M 29.0
DCGCN(single) 0.2M 31.6

Seq2SeqK (Konstas et al., 2017) 2M 32.3
GraphLSTM (Song et al., 2018) 2M 33.6
Seq2SeqK (Konstas et al., 2017) 20M 33.8

DCGCN(single) 0.3M 33.2
DCGCN(ensemble) 0.3M 35.3

Table 3: Main results on AMR15 with/without
external Gigaword sentences as auto-parsed
data are used.

performance of DCGCN is 4.2 and 3.4 BLEU
points higher than Seq2SeqK and GraphLSTM,
respectively. The DCGCN model is able to achieve
competitive BLEU points (33.2) by using 0.3M
external data, while GraphLSTM achieves a score
of 33.6 by using 2M data and Seq2SeqK achieves
a score of 33.8 by using 20M data. These results
show that our model is more effective in terms
of using automatically generated AMR graphs.
Using 0.3M additional data, our ensemble model
achieves the new state-of-the-art result of 35.3
BLEU points.

4.3 Main Results on Syntax-based NMT

Table 4 shows the results for the English-German
(En-De) and English-Czech (En-Cs) translation
tasks. BoW+GCN, CNN+GCN, and BiRNN+GCN
refer to utilizing the following encoders with a
GCN layer on top respectively: 1) a bag-of-
words encoder, 2) a one-layer CNN, and 3) a
bidirectional RNN. PB-SMT is the phrase-based
statistical machine translation model using Moses
(Koehn et al., 2007). Our single model achieves
19.0 and 12.1 BLEU points on the En-De and
En-Cs tasks, respectively, significantly outperform-
ing all the single models. For example, compared
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English-German English-Czech

Model Type #P B C #P B C

BoW+GCN (Bastings et al., 2017) Single − 12.2 − − 7.5 −
CNN+GCN (Bastings et al., 2017) Single − 13.7 − − 8.7 −
BiRNN+GCN (Bastings et al., 2017) Single − 16.1 − − 9.6 −
PB-SMT (Beck et al., 2018) Single − 12.8 43.2 − 8.6 36.4
Seq2SeqB (Beck et al., 2018) Single 41.4M 15.5 40.8 39.1M 8.9 33.8
GGNN2Seq (Beck et al., 2018) Single 41.2M 16.7 42.4 38.8M 9.8 33.3

DCGCN (ours) Single 29.7M 19.0 44.1 28.3M 12.1 37.1

Seq2SeqB (Beck et al., 2018) Ensemble 207M 19.0 44.1 195M 11.3 36.4
GGNN2Seq (Beck et al., 2018) Ensemble 206M 19.6 45.1 194M 11.7 35.9

DCGCN (ours) Ensemble 149M 20.5 45.8 142M 13.1 37.8

Table 4: Main results on English-German and English-Czech datasets.

with the best GCN-based model (BiRNN+GCN),
our single DCGCN model surpasses it by 2.7
and 2.5 BLEU points on the En-De and En-Cs
tasks, respectively. Our models consist of full
GCN layers, removing the burden of using a
recurrent encoder to extract non-local contextual
information in the bottom layers. Compared with
non-GCN models, our single DCGCN model is
2.2 and 1.9 BLEU points higher than the current
state-of-the-art single model (GGNN2Seq) on the
En-De and En-Cs translation tasks, respectively.
In addition, our single model is comparable to the
ensemble results of Seq2SeqB and GGNN2Seq,
whereas the number of parameters of our models is
only about 1/6 of theirs. Additionally, the ensem-
ble DCGCN models achieve 20.5 and 13.1 BLEU
points on the En-De and En-Cs tasks, respectively.
Our ensemble results are significantly higher than
those of the state-of-the-art syntax-based ensem-
ble models reported by GGNN2Seq (En-De: 20.5
vs. 19.6; En-Cs: 13.1 vs. 11.7 in terms of BLEU).

4.4 Additional Experiments

Layers in the Sub-block. Table 5 shows the
effect of the number of layers of each sub-
block on the AMR15 development set. DenseNets
(Huang et al., 2017) use two kinds of convolution
filters: 1 × 1 and 3 × 3. Similar to DenseNets,
we choose the values of n and m for layers
from [1, 2, 3, 6]. We choose this value range by
considering the scale of non-local nodes, the
abstract information at different level, and the
calculation efficiency. For brevity, we only show
representative configurations. We first inves-
tigate DCGCN with one block. In general, the

Block n m B C

1

1 1 17.6 48.3
1 2 19.2 50.3
2 1 18.4 49.1
1 3 19.6 49.4
3 1 20.0 50.5
3 3 21.4 51.0
3 6 21.8 51.7
6 3 21.7 51.5
6 6 22.0 52.1

2
3 6 23.5 53.3
6 3 23.3 53.4
6 6 22.0 52.1

Table 5: The effect of the number of layers inside
DCGCN sub-blocks on the AMR15 develop-
ment set.

performance increases when we gradually enlarge
n and m. For example, when n = 1 and m = 1,
the BLEU score is 17.6; when n = 6 and m = 6,
the BLEU score becomes 22.0. We observe
that the three settings (n = 6, m = 3), (n = 3,
m = 6), and (n = 6, m = 6) give similar results
for both 1 DCGCN block and 2 DCGCN blocks.
Because the first two settings contain fewer
parameters than the third setting, it is reasonable to
choose either (n = 6, m = 3) or (n = 3, m = 6).
For later experiments, we use (n = 6, m = 3).

Comparisons with Baselines. The first block
in Table 6 shows the performance of our two
baseline models: multi-layer GCNs with residual
connections (GCN+RC) and multi-layer GCNs
with both residual connections and layer aggre-
gations (GCN+RC+LA). In general, increasing
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GCN B C GCN B C

+RC (2) 16.8 48.1 +RC+LA (2) 18.3 47.9
+RC (4) 18.4 49.6 +RC+LA (4) 18.0 51.1
+RC (6) 19.9 49.7 +RC+LA (6) 21.3 50.8
+RC (9) 21.1 50.5 +RC+LA (9) 22.0 52.6
+RC (10) 20.7 50.7 +RC+LA (10) 21.2 52.9

DCGCN1 (9) 22.9 53.0 DCGCN3 (27) 24.8 54.7
DCGCN2 (18) 24.2 54.4 DCGCN4 (36) 25.5 55.4

Table 6: Comparisons with baselines. +RC denotes
GCNs with residual connections. +RC+LA refers
to GCNs with both residual connections and layer
aggregations. DCGCNi represents our model
with i blocks, containing i × (n + m) layers.
The number of layers for each model is shown
in parentheses.

the number of GCN layers from 2 to 9 boosts
the model performance. However, when the layer
number exceeds 10, the performance of both
baseline models start to drop. For example,
GCN+RC+LA (10) achieves a BLEU score of
21.2, which is worse than GCN+RC+LA (9).
In preliminary experiments, we cannot manage
to train very deep GCN+RC and GCN+RC+LA
models. In contrast, our DCGCN models can
be trained using a large number of layers. For
example, DCGCN4 contains 36 layers. When we
increase the DCGCN blocks from 1 to 4, the model
performance continues increasing on the AMR15
development set. We therefore choose DCGCN4
for the AMR experiments. Using a similar method,
DCGCN2 is selected for the NMT tasks. When
the layer numbers are 9, DCGCN1 is better than
GCN+RC in term of B/C scores (21.7/51.5 vs.
21.1/50.5). GCN+RC+LA (9) is sightly better than
DCGCN1. However, when we set the number to
18, GCN+RC+LA achieves a BLEU score of
19.4, which is significantly worse than the BLEU
score obtained by DCGCN2 (23.3). We also try
GCN+RC+LA (27), but it does not converge. In
conclusion, these results show the robustness and
effectiveness of our DCGCN models.

Performance vs. Parameter Budget. We also
evaluate the performance of DCGCN model against
different number of parameters on the AMR gen-
eration task. Results are shown in Figure 6. Specif-
ically, we try four parameter budgets, including
11.8M, 14.0M, 16.2M, and 18.4M. These num-
bers correspond to the model size (in terms of
number of parameters) of DCGCN1, DCGCN2,

DCGCN3, and DCGCN4, respectively. For each
budget, we vary both the depth of GCN models
and the hidden vector dimensions of each node
in GCNs in order to exhaust the entire budget.
For example, GCN(2) − 512, GCN(3) − 426,
GCN(4)−372, andGCN(5)−336 contain about
11.8M parameters, where GCN(i) − d indicates
a GCN model with i layers and the hidden size for
each node is d. We compare DCGCN1 with these
four models. DCGCN1 gives 22.9 BLEU points.
For the GCN models, the best result is obtained
by GCN(5)− 336, which falls behind DCGCN1
by 2.0 BLEU points. We compare DCGCN2,
DCGCN3, and DCGCN4 with their equal-sized
GCN models in a similar way. The results show
that DCGCN consistently outperforms GCN under
the same parameter budget. When the parameter
budget becomes larger, we can observe that the
performance difference becomes more prominent.
In particular, the BLEU margins between DCGCN
models and their best GCN models are 2.0, 2.7,
2.7, and 3.4, respectively.

Performance vs. Layers. We compare DCGCN
models with different layers under the same param-
eter budget. Table 7 shows the results. For exam-
ple, when both DCGCN1 and DCGCN2 are limited
to 10.9M parameters, DCGCN2 obtains 22.2
BLEU points, which is higher than DCGCN1
(20.9). Similarly, when DCGCN3 and DCGCN4
contain 18.6M and 18.4M parameters, DCGCN4
outperforms DCGCN3 by 1 BLEU point with a
slightly smaller model. In general, we found when
the parameter budget is the same, deeper DCGCN
models can obtain better results than the shallower
ones.

Level of Density. Table 8 shows the ablation
study of the level of density of our model. We use
DCGCNs with 4 dense blocks as the full model.
Then we remove dense connections gradually
from the last block to the first block. In general, the
performance of the model drops substantially as
we remove more dense connections until it cannot
converge without dense connections. The full model
gives 25.5 BLEU points on the AMR15 dev set.
After removing the dense connections in the last
block, the BLEU score becomes 24.8. Without
using the dense connections in the last two blocks,
the score drops to 23.8. Furthermore, excluding the
dense connections in the last three blocks only
gives 23.2 BLEU points. Although these four
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Figure 6: Comparison of DCGCN and GCN over different number of parameters. a-b means the model has a
layers (a blocks for DCGCN) and the hidden size is b (e.g., 5-336 means a 5-layer GCN with the hidden size 336).

Model D #P B C

DCGCN(1) 300 10.9M 20.9 52.0
DCGCN(2) 180 22.2 52.3

DCGCN(2) 240 11.3M 22.8 52.8
DCGCN(4) 180 11.4M 23.4 53.4

DCGCN(1) 420 12.6M 22.2 52.4
DCGCN(2) 300 12.5M 23.8 53.8
DCGCN(3) 240 12.3M 23.9 54.1

DCGCN(2) 360 14.0M 24.2 54.4
DCGCN(3) 300 24.4 54.2

DCGCN(2) 420 15.6M 24.1 53.7
DCGCN(4) 300 24.6 54.8

DCGCN(3) 420 18.6M 24.5 54.6
DCGCN(4) 360 18.4M 25.5 55.4

Table 7: Comparisons of different DCGCN
models under almost the same parameter budget.

models have the same number of layers, dense
connections allow the model to achieve much
better performance. If all the dense connections
are not considered, the model does not coverage
at all. These results indicate dense connections do
play a significant role in our model.

Ablation Study for Encoder and Decoder.
Following Song et al. (2018), we conduct a further
ablation study for modules used in the graph
encoder and LSTM decoder on the AMR15 dev
set, including linear combination, global node,
direction aggregation, graph attention mecha-
nism, and coverage mechanism using the 4-block
models by always keeping the dense connections.

Table 9 shows the results. For the encoder, we
find that the linear combination and the global
node have more contributions in terms of B/C

Model B C

DCGCN4 25.5 55.4
-{4} dense block 24.8 54.9
-{3, 4} dense blocks 23.8 54.1
-{2, 3, 4} dense blocks 23.2 53.1

Table 8: Ablation study for density of
connections on the dev set of AMR15. -{i} dense
block denotes removing the dense connections
in the i-th block.

Model B C

DCGCN4 25.5 55.4

Encoder Modules
-Linear Combination 23.7 53.2
-Global Node 24.2 54.6
-Direction Aggregation 24.6 54.6
-Graph Attention 24.9 54.7
-Global Node&Linear Combination 22.9 52.4

Decoder Modules
-Coverage Mechanism 23.8 53.0

Table 9: Ablation study for modules used in the
graph encoder and the LSTM decoder.

scores. The results drop by 2/2.2 and 1.3/1.2
points, respectively, after removing them. Without
these two components, our model gives a BLEU
score of 22.6, which is still better than the best
GCN+RC model (21.1) and the best GCN+RC+LA
model (22.1). Adding either the global node or the
linear combination improves the baseline models
with only dense connections. This suggests that
enriching input graphs with the global node and
including the linear combination can facilitate
GCNs to learn better information aggregations,
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Figure 7: CHRF++ scores with respect to the input
graph size for three models.

producing more expressive graph representations.
Results also show the linear combination is more
effective than the global node. Considering them
together further enhances the model performance.
After removing the graph attention module, our
model gives 24.9 BLEU points. Similarly, exclud-
ing the direction aggregation module leads to a
performance drop to 24.6 BLEU points. The cover-
age mechanism is also effective in our models.
Without the coverage mechanism, the result drops
by 1.7/2.4 points for B/C scores.

4.5 Analysis and Discussion

Graph Size. Following Bastings et al. (2017),
we show in Figure 7 the CHRF++ score variations
according to the graph size |G| on the AMR2015
development set, where |G| refers to the number
of nodes in the extended Levi graph. We bin
the graph size into five classes (≤ 30, (30, 40],
(40, 50], (50, 60], > 60). We average the sentence-
level CHRF++ scores of the sentences in the
same bin to plot Figure 7. For small graphs (i.e.,
|G| ≤ 30), DCGCN obtains similar results as
the baselines. For large graphs, DCGCN signif-
icantly outperforms the two baselines. In general,
as the graph size increases, the gap between DCGCN
and the two baselines becomes larger. In addition,
we can also notice that the margin between GCN
and GCN+LA is quite stable, while the margin
between DCGCN and GCN+LA varies according
to the graph size. The trend for BLEU scores is
similar to CHRF++ scores. This suggests that
DCGCN can perform better for larger graphs
as its deeper architecture can capture the long-
distance dependencies. Dense connections facil-
itate information propagation in large graphs, while

(s / state-01
00 :ARG0 (p / person
0000 :ARG0-of (h / have-org-role-91
000000 :ARG1 (i / intelligence
00000000 :mod (c / country :wiki "united states"
0000000000 :name (n / name :op1 "u.s.")))
000000 :ARG2 (o / official)))
00 :ARG1 (c2 / continue-01
0000 :ARG0 (p2 / person
000000 :ARG0-of (h2 / have-org-role-91
00000000 :ARG2 (o2 / official
0000000000 :mod (c3 / country :wiki "north korea"
000000000000 :name (n2 / name :op1 "north" :op2
000000000000 "korea")))))
0000 :ARG1 (t / trade-01
000000 :ARG1 (t2 / technology
00000000 :purpose (w / weapon
0000000000 :ARG2-of (d / destroy-01
000000000000 :degree (m / mass))))
000000 :mod (g / globe))
0000 :ARG2-of (i2 / include-01
000000 :ARG1 (i3 / instruct-01
00000000 :ARG3 (m2 / make-01
00000000000 :ARG1 (m3 / missile
0000000000000 :ARG1-of (a / advanced-02)))))))

Reference: u.s. intelligence officials stated that north korean
officials are continuing global trade in technology for weapons
of mass destruction including instructions for making advanced
missiles.

GCN+RC: a u.s. intelligence official stated that north korea
officials continued the global trade for weapons of mass
destruction by making advanced missiles to make advanced
missiles.

GCN+RC+LA: a u.s. intelligence official stated that north
korea officials continued global trade with weapons of mass
destruction including making advanced missiles.

DCGCN: a u.s. intelligence official stated that north korea
officials continue global trade on technology for weapons of
mass destruction including instructions to make advanced
missiles.

Table 10: Example outputs.

shallow GCNs might struggle to capture such
dependencies.

Example Output. Table 10 shows example out-
puts from three models for the AMR-to-text task,
together with the corresponding AMR graph as
well as the text reference. The word ‘‘technology’’
in the reference acts as a link between ‘‘global
trade’’ and ‘‘weapons of mass destruction’’, offering
the background knowledge to help understand the
context. The word ‘‘instructions’’ also plays a
crucial role in the generated sentence — without
the word the sentence will have a significantly dif-
ferent meaning. Both GCN+RC and GCN+RC+LA
fail to successfully generate these two important
words. The output from GCN+RC does not even
appear to be grammatically correct. In contrast,
DCGCN manages to generate both words. We
believe this is because DCGCN is able to learn
richer semantic information by capturing complex
long dependencies. GCN+RC+LA does generate
an output that looks similar to the reference at
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the token level. However, the conveyed semantic
information in the generated sentence largely dif-
fers from that of the reference. DCGCNs do not
have this problem.

5 Related Work

Our work builds on a rich line of recent efforts on
graph-to-sequence models, graph convolutional
networks, and densely connected convolutional
networks.

Graph-to-Sequence Learning. Early research
efforts for graph-to-sequence learning are based
on statistical methods. Lu et al. (2009) present a
language generation model using the tree-structured
meaning representation based on tree conditional
random fields. Lu and Ng (2011) propose a model
for language generation from lambda calculus
expressions that can be represented as forest
structures. Konstas and Lapata (2012, 2013) lever-
age hypergraphs for concept-to-text generation.
Flanigan et al. (2016) transform a given AMR
graph into a spanning tree, before translating it
into a sentence using a tree-to-string transducer.
Pourdamghani et al. (2016) adopt a phrase-based
model for machine translation (Koehn et al., 2003)
based on a linearized AMR graph. Song et al.
(2017) leverage a synchronous node replacement
grammar. Konstas et al. (2017) also linearize the
input graph and feed it to the Seq2Seq model
(Sutskever et al., 2014).

Sequence-based neural networks may lose struc-
tural information from the original graph because
they require linearization of the input graph. Recent
research efforts consider developing encoders
with graph neural networks. Beck et al. (2018)
use GGNNs (Li et al., 2016) as the encoder and
introduce the Levi graph that allows nodes and
edges to have their own hidden representations.
Song et al. (2018) propose the graph-state LSTM
to directly encode graph-level semantics. In order
to capture non-local information, the encoder
performs graph state transition by information
exchange between connected nodes. Their work
belongs to the family of RNNs. Our graph en-
coder is built based on GCNs. Recurrent graph
neural networks (Li et al., 2016; Song et al.,
2018) use gated operations to update node states
whereas graph convolutional networks use linear
transformation. The contrast between our model
and theirs is reminiscent of the contrast between
CNN and RNN.

Closest to our work, Bastings et al. (2017) stack
GCNs upon a RNN or CNN encoder because
2-layer GCNs may not be able to capture non-
local information, especially when the graph is
large. Our graph encoder solely relies on the
DCGCN model, whose deep network structure
encodes richer local and non-local information for
learning better graph representations.

Densely Connected Convolutional Networks.
Intuitively, neural networks should be able to learn
rich representations by stacking a large number
of layers. However, empirical results often do
not support such an intuition—useful information
captured in earlier layers may get lost after
passing through subsequent layers. Many recent
efforts focus on resolving such an issue. Highway
Networks (Srivastava et al., 2015) use bypassing
paths along with gating units to train networks.
ResNets (He et al., 2016), in which identity map-
pings are used as bypassing paths, have achieved
impressive performance on various tasks. DenseNets
(Huang et al., 2017) refine this insight and propose
a dense connectivity strategy, which connects all
layers directly with each other to ensure maximum
information flow between layers.

Graph Convolutional Networks. Early efforts
that attempt to extend neural networks to deal
with arbitrary structured graphs are introduced
by Gori et al. (2005) and Scarselli et al. (2009),
where the states of nodes are updated based
on the states of their neighbors. Bruna (2014)
then applies the convolution operation on graph
Laplacians to construct efficient architectures in
the spectral domain. Subsequent efforts improve
its computational efficiency with local spectral
convolution techniques (Henaff et al., 2015;
Defferrard et al., 2016; Kipf and Welling, 2017).

Our approach is closely related to GCNs (Kipf
and Welling, 2017), which restrict the filters
to operate on a first-order neighborhood around
each node. Recent improvements and extensions
of GCNs include using additional aggregation
methods such as vertex attention (Velickovic
et al., 2018) or pooling mechanism (Hamilton et al.,
2017) to better summarize neighborhood states.

However, the best performance of GCNs is
achieved with a 2-layer model, while deeper
models perform worse though they can potentially
have access to more non-local information.
Li et al. (2018) show that this issue is due to the
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over-smoothed output representations that impede
distinguishing nodes from different clusters. Re-
cent attempts that try to address this issue includes
the use of layer-aggregation functions (Xu et al.,
2018), which combine learned features from all
layers, and the use of co-training and self-training
mechanisms that encourage exploration on the
entire graph (Li et al., 2018).

6 Conclusion

We introduce the novel densely connected graph
convolutional networks to learn structural graph
representations. Experimental results show that
DCGCNs can outperform state-of-the-art models
in two tasks: AMR-to-text generation and syntax-
based neural machine translation. Unlike previous
designs of GCNs, DCGCNs scale naturally to
significantly more layers without suffering from
performance degradation and optimization diffi-
culties, thanks to the introduced dense connec-
tivity mechanism. Such a deep architecture allows
the encoder to better capture the rich structural
information of a graph, especially when it is large.

There are multiple venues for future work. One
natural question we would like to ask is how to
make use of the proposed framework to perform
improved graph representation learning for various
graph related tasks (Xu et al., 2018). On the
other hand, we would also like to investigate how
other NLP applications such as relation extraction
(Zhang et al., 2018b) and semantic role labeling
(Marcheggiani and Titov, 2017) can potentially
benefit from our proposed approach.
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Yoshua Bengio. 2018. Graph attention networks.
In Proceedings of ICLR.

Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken ichi Kawarabayashi,
and Stefanie Jegelka. 2018. Representation
learning on graphs with jumping knowledge
networks. In Proceedings of ICML.

Yue Zhang, Qi Liu, and Linfeng Song. 2018a.
Sentence-state LSTM for text representation.
In Proceedings of ACL.

Yuhao Zhang, Peng Qi, and Christopher D.
Manning. 2018b. Graph convolution over pruned
dependency trees improves relation extraction.
In Proceedings of EMNLP.

312

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00269 by guest on 20 April 2024


	Introduction
	Densely Connected GCNs
	GCNs
	Dense Connectivity
	Graph Attention

	Graph-to-Sequence Model
	Graph Encoder
	Extended Levi Graph
	Direction Aggregation
	Decoder

	Experiments
	Experimental Setup
	Main Results on AMR-to-text Generation
	Main Results on Syntax-based NMT
	Additional Experiments
	Analysis and Discussion*-0.5pt

	Related Work
	Conclusion

