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Abstract

We propose a novel geometric approach for
learning bilingual mappings given monolin-
gual embeddings and a bilingual dictionary.
Our approach decouples the source-to-target
language transformation into (a) language-
specific rotations on the original embeddings
to align them in a common, latent space, and
(b) a language-independent similarity met-
ric in this common space to better model
the similarity between the embeddings. Over-
all, we pose the bilingual mapping prob-
lem as a classification problem on smooth
Riemannian manifolds. Empirically, our ap-
proach outperforms previous approaches on
the bilingual lexicon induction and cross-
lingual word similarity tasks.

We next generalize our framework to rep-
resent multiple languages in a common latent
space. Language-specific rotations for all the
languages and a common similarity metric
in the latent space are learned jointly from
bilingual dictionaries for multiple language
pairs. We illustrate the effectiveness of joint
learning for multiple languages in an indirect
word translation setting.

1 Introduction

Bilingual word embeddings are a useful tool
in natural language processing (NLP) that has
attracted a lot of interest lately due to a fun-
damental property: similar concepts/words across

∗This work was carried out during the author’s internship
at Microsoft, India.

different languages are mapped close to each
other in a common embedding space. Hence,
they are useful for joint/transfer learning and
sharing annotated data across languages in
different NLP applications such as machine
translation (Gu et al., 2018), building bilingual
dictionaries (Mikolov et al., 2013b), mining par-
allel corpora (Conneau et al., 2018), text clas-
sification (Klementiev et al., 2012), sentiment
analysis (Zhou et al., 2015), and dependency
parsing (Ammar et al., 2016).

Mikolov et al. (2013b) empirically show that a
linear transformation of embeddings from one
language to another preserves the geometric ar-
rangement of word embeddings. In a supervised
setting, the transformation matrix, W, is learned
given a small bilingual dictionary and their
corresponding monolingual embeddings. Subse-
quently, many refinements to the bilingual map-
ping framework have been proposed (Xing et al.,
2015; Smith et al., 2017b; Conneau et al., 2018;
Artetxe et al., 2016, 2017, 2018a,b).

In this work, we propose a novel geometric ap-
proach for learning bilingual embeddings. We ro-
tate the source and target language embeddings
from their original vector spaces to a common
latent space via language-specific orthogonal
transformations. Furthermore, we define a sim-
ilarity metric, the Mahalanobis metric, in this
common space to refine the notion of similarity
between a pair of embeddings. We achieve the
above by learning the transformation matrix as
follows: W = UtBU>s, where Ut and Us are
the orthogonal transformations for target and
source language embeddings, respectively, and
B is a positive definite matrix representing the
Mahalanobis metric.
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The proposed formulation has the following
benefits:

• The learned similarity metric allows for a
more effective similarity comparison of em-
beddings based on evidence from the data.

• A common latent space decouples the source
and target language transformations, and
naturally enables representation of word em-
beddings from both languages in a single
vector space.

• We also show that the proposed method can
be easily generalized to jointly learn mul-
tilingual embeddings, given bilingual dic-
tionaries of multiple language pairs. We
map multiple languages into a single vector
space by learning the characteristics common
across languages (the similarity metric) as
well as language-specific attributes (the
orthogonal transformations).

The optimization problem resulting from our
formulation involves orthogonal constraints on
language-specific transformations (Ui for lan-
guage i) as well as the symmetric positive-
definite constraint on the metric B. Instead of
solving the optimization problem in the Euclidean
space with constraints, we view it as an optimi-
zation problem in smooth Riemannian manifolds,
which are well-studied topological spaces (Lee,
2003). The Riemannian optimization frame-
work embeds the given constraints into the search
space and conceptually views the problem as
an unconstrained optimization problem over the
manifold.

We evaluate our approach on different bilingual
as well as multilingual tasks across multiple lan-
guages and datasets. The following is a summary
of our findings:

• Our approach outperforms state-of-the-art
supervised and unsupervised bilingual map-
ping methods on the bilingual lexicon in-
duction as well as the cross-lingual word
similarity tasks.

• An ablation analysis reveals that the fol-
lowing contribute to our model’s improved
performance: (a) aligning the embedding
spaces of different languages, (b) learning
a similarity metric which induces a latent
space, (c) performing inference in the in-

duced latent space, and (d) formulating the
tasks as a classification problem.

• We evaluate our multilingual model on an
indirect word translation task: translation
between a language pair that does not have a
bilingual dictionary, but the source and target
languages each possess a bilingual dictionary
with a third, common pivot language. Our
multilingual model outperforms a strong
unsupervised baseline as well as methods
based on adapting bilingual methods for this
indirect translation task.

• Lastly, we propose a semi-supervised exten-
sion of our approach that further improves
performance over the supervised approaches.

The rest of the paper is organized as follows.
Section 2 discusses related work. The proposed
framework, including problem formulations for
bilingual and multilingual mappings, is presented
in Section 3. The proposed Riemannian opti-
mization algorithm is described in Section 4. In
Section 5, we discuss our experimental setup.
Section 6 presents the results of experiments on
direct translation with our algorithms and analyzes
the results. Section 7 presents experiments on in-
direct translation using our generalized multi-
lingual algorithm. We discuss a semi-supervised
extension to our framework in Section 8.
Section 9 concludes the paper.

2 Related Work

Bilingual Embeddings. Mikolov et al. (2013b)
show that a linear transformation from embed-
dings of one language to another can be learned
from a bilingual dictionary and corresponding
monolingual embeddings by performing linear
least-squares regression. A popular modification
to this formulation constrains the transformation
matrix to be orthogonal (Xing et al., 2015; Smith
et al., 2017b; 2018a). This is known as the orthog-
onal Procrustes problem (Schönemann, 1966).
Orthogonality preserves monolingual distances
and ensures the transformation is reversible.
Lazaridou et al. (2015) and Joulin et al. (2018)
optimize alternative loss functions in this frame-
work. Artetxe et al. (2018a) improves on the
Procrustes solution and propose a multi-step
framework consisting of a series of linear trans-
formations to the data. Faruqui and Dyer (2014)
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use Canonical Correlation Analysis (CCA) to
learn linear projections from the source and
target languages to a common space such that
correlations between the embeddings projected to
this space are maximized. Procrustes solution–
based approaches have been shown to perform
better than CCA-based approaches (Artetxe et al.,
2016, 2018a).

We view the problem of mapping the source
and target languages word embeddings as (a)
aligning the two language spaces and (b) learning
a similarity metric in this (learned) common
space. We accomplish this by learning suitable
language-specific orthogonal transformations (for
alignment) and a symmetric positive-definite ma-
trix (as Mahalanobis metric). The similarity metric
is useful in addressing the limitations of mapping
to a common latent space under orthogonality
constraints, an issue discussed by Doval et al.
(2018). Whereas Doval et al. (2018) learn a second
correction transformation by assuming the average
of the projected source and target embeddings
as the true latent representation, we make no
such assumption and learn the similarity metric
from the data. Kementchedjhieva et al. (2018),
recently, employed the generalized Procrustes
analysis (GPA) method (Gower, 1975) for the
bilingual mapping problem. GPA maps both the
source and target language embeddings to a latent
space, which is constructed by averaging over the
two language spaces.

Unsupervised methods have shown promising
results, matching supervised methods in many
studies. Artetxe et al. (2017) proposed a boot-
strapping method for bilingual lexicon induction
problem by using a small-seed bilingual dictio-
nary. Subsequently, Artetxe et al. (2018b) and
Hoshen and Wolf (2018) have proposed ini-
tialization methods that eliminate the need for
a seed dictionary. Zhang et al. (2017b) and Grave
et al. (2018) proposed aligning the source and
target language word embeddings by optimizing
the Wasserstein distance. Unsupervised methods
based on adversarial training objectives have also
been proposed (Barone, 2016; Zhang et al., 2017a;
Conneau et al., 2018; Chen and Cardie, 2018). A
recent work by Søgaard et al. (2018) discusses
cases in which unsupervised bilingual lexicon
induction does not lead to good performance.

Multilingual Embeddings. Ammar et al. (2016)
and Smith et al. (2017a) adapt bilingual ap-

proaches for representing embeddings of multiple
languages in a common vector space by desig-
nating one of the languages as a pivot language.
In this simple approach, bilingual mappings are
learned independently from all other languages
to the pivot language. A GPA-based method
(Kementchedjhieva et al., 2018) may also be
used to jointly transform multiple languages to
a common latent space. However, this requires
an n-way dictionary to represent n languages.
In contrast, the proposed approach requires only
pairwise bilingual dictionaries such that every
language under consideration is represented in at
least one bilingual dictionary.

The above-mentioned approaches are referred
to as offline since the monolingual and bilingual
embeddings are learned separately. In contrast,
online approaches directly learn a bilingual/
multilingual embedding from parallel corpora
(Hermann and Blunsom, 2014; Huang et al., 2015;
Duong et al., 2017), optionally augmented with
monolingual corpora (Klementiev et al., 2012;
Chandar et al., 2014; Gouws et al., 2015). In this
work, we focus on offline approaches.

3 Learning Latent Space Representation

In this section, we first describe the proposed
geometric framework to learn bilingual embed-
dings. We then present its generalization to the
multilingual setting.

3.1 Geometry-aware Factorization
We propose to transform the word embeddings
from the source and target languages to a com-
mon space in which the similarity of word em-
beddings may be better learned. To this end, we
align the source and target languages embedding
spaces by learning language-specific rotations:
Us ∈ Od and Ut ∈ Od for the source and target
languages embeddings, respectively. Here Od

represents the space of d-dimensional orthogonal
matrices. An embedding x in the source language
is thus transformed to ψs(x) = U>s x. Similarly,
for an embedding z in the target language:
ψt(z) = U>t z. These orthogonal transformations
map (align) both the source and target language
embeddings to a common space in which we learn
a data-dependent similarity measure, as discussed
below.
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We learn a Mahalanobis metric B to refine the
notion of similarity1 between the two transformed
embeddings ψs(x) and ψt(z). The Mahalanobis
metric incorporates the feature correlation infor-
mation from the given training data. This allows
for a more effective similarity comparison of
language embeddings (than the cosine similarity).
In fact, Mahalanobis similarity measure reduces
to cosine similarity when the features are un-
correlated and have unit variance, which may be
a strong assumption in real-world applications.
Søgaard et al. (2018) have argued that mono-
lingual embedding spaces across languages are
not necessarily isomorphic, hence learning an
orthogonal transformation alone may not be suf-
ficient. A similarity metric learned from the data
may mitigate this limitation to some extent by
learning a correction in the latent space.

Since B is a Mahalanobis metric in Rd space,
it is a d × d symmetric positive-definite matrix
B, i.e., B � 0. The similarity between the em-
beddings x and z in the proposed setting is
computed as hst(x, z) = ψt(z)

>Bψs(x) =
z>(UtBU>s )x. The source to the target language
transformation is expressed as Wts = UtBU>s .
For an embedding x in the source language, its
transformation to the target language space is
given by Wtsx.

The proposed factorization of the transforma-
tionW = UBV>, whereU,V ∈ Od andB � 0,
is sometimes referred to as polar factorization of
a matrix (Bonnabel and Sepulchre, 2010; Meyer
et al., 2011). Polar factorization is similar to the
singular value decomposition (SVD) The key dif-
ference is that SVD enforces B to be a diagonal
matrix with non-negative entries, which accounts
for only the axis rescaling instead of full fea-
ture correlation and is more difficult to optimize
(Mishra et al., 2014; Harandi et al., 2017).

3.2 Latent Space Interpretation

Computing the Mahalanobis similarity measure is
equivalent to computing the cosine similarity in
a special latent (feature) space. This latent space
is defined by the transformation φ : Rd → Rd,
where the mapping is defined as φ(w) = B

1
2w.

1Mahalanobis metric generalizes the notion of cosine
similarity. For given two unit normalized vectors x1, x2 ∈
Rd, their cosine similarity is given by simI(x1, x2) =
x>1 Ix2 = x>1 x2, where I is the identity matrix. If this space is
endowed with a metric B � 0, then simB(x1, x2) = x>1 Bx2.

Since B is a symmetric positive-definite matrix,
B

1
2 is well-defined and unique.
Hence, our model may equivalently be viewed

as learning a suitable latent space as follows.
The source and target languages embeddings are
linearly transformed as x 7→ φ(ψs(x)) and z 7→
φ(ψt(z)), respectively. The functions φ(ψs(·))
and φ(ψt(·)) map the source and target language
embeddings, respectively, to a common latent
space. We learn the matrices B, Us, and Ut

corresponding to the transformations φ(·), ψs(·),
and ψt(·), respectively. Since the matrix B is
embedded implicitly in this latent feature space,
we employ the usual cosine similarity measure,
computed asφ(ψt(z))

>φ(ψs(x)) = z>UtBU>s x.
It should be noted that this is equal to hst(x, z).

3.3 A Classification Model
We assume a small bilingual dictionary (of size n)
is available as the training data. Let Xs ∈ Rd×ns

and Xt ∈ Rd×nt denote the embeddings of the
dictionary words from the source and target
languages, respectively. Here, ns and nt are the
number of unique words in the source and target
languages present in the dictionary.

We propose to model the bilingual word
embedding mapping problem as a binary classi-
fication problem. Consider word embeddings x
and z from the source and target languages, re-
spectively. If the words corresponding to x and
z constitute a translation pair then the pair {x, z}
belongs to the positive class, else it belongs to
the negative class. The prediction function for the
pair {x, z} is hst(x, z). We create a binary label
matrix Yst ∈ {0, 1}ns×nt whose (i, j)-th entry
corresponds to the correctness of mapping the i-th
embedding in Xs to the j-th embedding in Xt.
Our overall optimization problem is as follows:

min
Us∈Od,Ut∈Od,B�0

‖X>sUsBU>t Xt −Yst‖2
F

+ λ‖B‖2
F . (1)

where ‖ ·‖F is the Frobenius norm and λ > 0
is the regularization parameter. We employ the
square loss function since it is smooth and
relatively easier to optimize. It should be noted
that our prediction function is invariant of the
direction of mapping, i.e., hst(x, z) = hts(z, x).
Hence, our model learns bidirectional mapping.
The transformation matrix from the target to the
source language is given by Wst = UsBU>t , i.e.,
Wst = W>

ts.
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The computation complexity of computing the
loss term in (1) is linear in n, the size of the given
bilingual dictionary. This is because the loss term
in (1) can be re-written as follows:

‖X>sUsBU>t Xt −Yst‖2
F

= Tr
(
UtBU>s (XsX

>
s )UsBU>t (XtX

>
t )
)

+ |Ω|

− 2
∑

{(i,j):(i,j)∈Ω}

x>siUsBU>t xtj , (2)

where xsi represents the i-th column in Xs, xtj
represents the j-th column in Xt, Ω is the set
of row-column indices corresponding to entry
value 1 in Yst, and Tr(·) denotes the trace of
a matrix. The complexity of computing the first
and third term in (2) is O(d3 + nsd

2 + ntd
2) and

O(nd+nsd
2 +ntd

2), respectively. Similarly, the
computation cost of the gradient of the objective
function in (1) is also linear in n. Hence, our
framework can efficiently leverage information
from all the negative samples.

In the next section, we discuss a generalization
of our approach to multilingual settings.

3.4 Generalization to Multilingual Setting

In this section, we propose a unified framework
for learning mappings when bilingual dictionaries
are available for multiple language pairs. We
formalize the setting as an undirected, connected
graph G(V,E), where each node represents a
language and an edge represents the availability of
a bilingual dictionary between the corresponding
pair of languages. Given all bilingual dictionaries
corresponding to the edge set E, we propose to
align the embedding spaces of all languages in the
node set V and learn a common latent space for
them.

To this end, we jointly learn an orthogonal
transformation Ui ∈ Od for every language Li
and the Mahalanobis metric B � 0. The latter is
common across all languages in the multilingual
setup and helps incorporate information across
languages in the latent space. It should be noted
that the transformation Ui is employed for all
the bilingual mapping problems in this graph
associated with Li. The transformation from Li
to Lj is given by Wji = UjBU>i . Further, we
are also able to obtain transformations between
any language pair in the graph, even if a bilingual
dictionary between them is not available.

Let Xj
i ∈ Rd×m be2 the embeddings of the

dictionary words of Li in the dictionary corre-
sponding to edge eij ∈ E. Let Yij ∈ {0, 1}m×m
be the binary label matrix corresponding to the
dictionary between Li and Lj . The proposed opti-
mization problem for multilingual setting is

min
Ui∈Od ∀i

B�0

∑
eij∈E

1

|Ωij |
‖(Xj

i )
>UiBU>j X

i
j −Yij‖2

F

+ λ‖B‖2
F . (3)

We term our approach as Geometry-aware
Multilingual Mapping (GeoMM). We next dis-
cuss the optimization algorithm for solving the
bilingual mapping problem (1) as well as its
generalization to the multilingual setting (3).

4 Optimization Algorithm

The geometric constraints Us ∈ Od,Ut ∈ Od,
and B � 0 in the proposed problems (1) and
(3) have been studied as smooth Riemannian
manifolds, which are well explored topological
spaces (Edelman et al., 1998). The orthogonal
matrices Ui lie in, what is popularly known as, the
d-dimensional Orthogonal manifold. The space
of d × d symmetric positive definite matrices
(B � 0) is known as the Symmetric Positive
Definite manifold. The Riemannian optimization
framework embeds such constraints into the
search space and conceptually views the problem
as an unconstrained problem over the manifolds.
In the process, it is able to exploit the geometry
of the manifolds and the symmetries involved in
them. Absil et al. (2008) discuss several tools to
systematically optimize such problems. We opti-
mize the problems (1) and (3) using the Riemannian
conjugate gradient algorithm (Absil et al., 2008;
Sato and Iwai, 2013).

Publicly available toolboxes such as Manopt
(Boumal et al., 2014), Pymanopt (Townsend
et al., 2016), or ROPTLIB (Huang et al., 2016)
have scalable off-the-shelf generic implementa-
tions of several Riemannian optimization algo-
rithms. We employ Pymanopt in our experiments,
where we only need to supply the objective
function.

2For notational convenience, the number of unique words
in every language in all their dictionaries is kept same (m).
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5 Experimental Settings

In this section, we describe the evaluation tasks,
the datasets used, and the experimental details of
the proposed approach.

Evaluation Tasks. We evaluate our approach on
several tasks:

• To evaluate the quality of the bilingual map-
pings generated, we evaluate our algorithms
primarily for the bilingual lexicon induc-
tion (BLI) task, i.e., word translation task,
and compare Precision@1 with previously
reported state-of-the-art results on bench-
mark datasets (Dinu and Baroni, 2015;
Artetxe et al., 2016; Conneau et al., 2018).

• We also evaluate on the cross-lingual word sim-
ilarity task using the SemEval 2017 dataset.

• To ensure that quality of embeddings on mono-
lingual tasks does not degrade, we evaluate
the quality of our embeddings on the mono-
lingual word analogy task (Artetxe et al., 2016).

• To illustrate the utility of representing
embeddings of multiple language in a single
latent space, we evaluate our multilingual
embeddings on the one-hop translation task,
i.e., a direct dictionary between the source
and target languages is not available, but the
source and target languages share a bilingual
dictionary with a pivot language.

Datasets. For bilingual and multilingual exper-
iments, we report results on the following widely
used, publicly available datasets:

• VecMap: This dataset was originally made
available by Dinu and Baroni (2015) with
subsequent extensions by other researchers
(Artetxe et al., 2017, 2018a). It contains
bilingual dictionaries from English (en) to
four languages: Italian (it), German (de),
Finnish (fi), and Spanish (es). The detailed
experimental settings for this BLI task can be
found in Artetxe et al. (2018b).

• MUSE: This dataset was originally made
available by Conneau et al. (2018). It contains
bilingual dictionaries from English to many
languages such as Spanish (es), French (fr),
German (de), Russian (ru), Chinese (zh), and
vice versa. The detailed experimental settings

for this BLI task can be found in Conneau
et al. (2018). This dataset also contains
bilingual dictionaries between several other
European languages, which we employ in
multilingual experiments.

Experimental Settings of GeoMM. We select
the regularization hyper-parameter λ from the set
{10, 102, 103, 104} by evaluation on a validation
set created out of the training dataset. For infer-
ence, we use the (normalized) latent space repre-
sentations of embeddings (B

1
2U>i x) to compute

similarity between the embeddings. For inference
in the bilingual lexicon induction task, we employ
the Cross-domain Similarity Local Scaling (CSLS)
similarity score (Conneau et al., 2018) in nearest
neighbor search, unless otherwise mentioned.
CSLS has been shown to perform better than
other methods in mitigating the hubness problem
(Dinu and Baroni, 2015) for search in high-
dimensional spaces.

While discussing experiments, we denote our
bilingual mapping algorithm (Section 3.3) as
GeoMM and its generalization to the multilingual
setting (Section 3.4) as GeoMMmulti . Our code
is available athttps://github.com/anoop
kunchukuttan/geomm.

6 Direct Translation: Results
and Analysis

In this section, we evaluate the performance of
our approach on two tasks: bilingual lexicon
induction and cross-lingual word similarity. We
also perform ablation tests to understand the effect
of major sub-components of our algorithm. We
verify the monolingual performance of the mapped
embeddings generated by our algorithm.

6.1 Bilingual Lexicon Induction (BLI)
We compare GeoMM with the best performing
supervised methods. We also compare with
unsupervised methods as they have been shown
to be competitive with supervised methods. The
following baselines are compared in the BLI
experiments.

• Procrustes: the bilingual mapping is learned
by solving the orthogonal Procrustes problem
(Xing et al., 2015; Artetxe et al., 2016; Smith
et al., 2017b; Conneau et al., 2018).

• MSF: the Multi-Step Framework proposed
by Artetxe et al. (2018a), with CSLS retrieval.
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Method en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en avg.
Supervised
GeoMM 81.9 85.5 82.1 84.2 74.9 76.7 52.8 67.6 49.1 45.3 70.0
GeoMMmulti 81.0 85.7 81.9 83.9 75.1 75.7 51.7 67.2 49.4 44.9 69.7
Procrustes 81.4 82.9 81.1 82.4 73.5 72.4 51.7 63.7 42.7 36.7 66.9
MSF-ISF 79.9 82.1 80.4 81.4 73.0 72.0 50.0 65.3 28.0 40.7 65.3
MSF 80.5 83.8 80.5 83.1 73.5 73.5 50.5 67.3 32.3 43.4 66.9
MSFµ 80.3 84.0 80.7 83.9 73.1 74.7 × × × × −
Unsupervised
SL-unsup 82.3 84.7 82.3 83.6 75.1 74.3 49.2 65.6 0.0 0.0 59.7
Adv-Refine∗ 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 32.5 31.4 64.3
Grave et al. (2018)∗ 82.8 84.1 82.6 82.9 75.4 73.3 43.7 59.1 − − −
Hoshen and Wolf (2018)∗ 82.1 84.1 82.3 82.9 74.7 73.0 47.5 61.8 f.c. f.c. −
Chen and Cardie (2018)∗ 82.5 83.7 82.4 81.8 74.8 72.9 − − − − −

Table 1: Precision@1 for BLI on the MUSE dataset. Some notations: (a) ‘−’ implies the original paper
does not report result for the corresponding language pair, (b) ‘f.c.’ implies the original paper reports
their algorithm failed to converge, (c) ‘×’ implies that we could not run the authors’ code successfully
for the language pairs, and (d) ‘∗’ implies the results of the algorithm are reported in the original paper.
The remaining results were obtained with the official implementation from the authors.

It improves on the original system (MSF-ISF)
by Artetxe et al. (2018a), which employs
inverted softmax function (ISF) score for
retrieval.

• Adv-Refine: unsupervised adversarial train-
ing approach, with bilingual dictionary refine-
ment (Conneau et al., 2018).

• SL-unsup: state-of-the-art self-learning
(SL) unsupervised method (Artetxe et al.,
2018b), employing structural similarity of
the embeddings.

We also include results of the correction
algorithm proposed by Doval et al. (2018) on the
MSF results (referred to as MSFµ). In addition,
we also include results of several recent works
(Kementchedjhieva et al., 2018; Grave et al.,
2018; Chen and Cardie, 2018; Hoshen and Wolf,
2018) on MUSE and VecMap datasets, which are
reported in the original papers.

Results on MUSE Dataset: Table 1 reports the
results on the MUSE dataset. We observe that our
algorithm GeoMM outperforms all the supervised
baselines. GeoMM also obtains significant im-
provements over unsupervised approaches.

The performance of the multilingual extension,
GeoMMmulti , is almost equivalent to the bilingual
GeoMM. This means that in spite of multiple
embeddings being jointly learned and represented
in a common space, its performance is still

Method en-it en-de en-fi en-es avg.
Supervised
GeoMM 48.3 49.3 36.1 39.3 43.3
GeoMMmulti 48.7 49.1 36.0 39.0 43.2
Procrustes 44.9 46.5 33.5 35.1 40.0
MSF-ISF 45.3 44.1 32.9 36.6 39.7
MSF 47.7 47.5 35.4 38.7 42.3
MSFµ 48.4 47.7 34.7 38.9 42.4
GPA 45.3 48.5 31.4 − −
CCA-NN 38.4 37.1 27.6 26.8 32.5
Unsupervised
SL-unsup 48.1 48.2 32.6 37.3 41.6
Adv-Refine 45.2 46.8 0.4 35.4 31.9

Table 2: Precision@1 for BLI on the VecMap
dataset. The results of MSF-ISF, SL-unsup, CCA-
NN (Faruqui and Dyer, 2014), and Adv-Refine
are reported by Artetxe et al. (2018b). CCA-NN
employs nearest neighbor retrieval procedure. The
results of GPA are reported by Kementchedjhieva
et al. (2018).

better than existing bilingual approaches. Thus,
our multilingual framework is quite robust since
languages from diverse language families have
been embedded in the same space. This can
allow downstream applications to support multiple
languages without performance degradation. Even
if bilingual embeddings are represented in a single
vector space using a pivot language, the embed-
ding quality is inferior compared with GeoMMmulti.
We discuss more multilingual experiments in
Section 7.
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Method en-it en-de en-fi en-es
GeoMM 48.3 49.3 36.1 39.3

(1) W ∈ Rd×d 45.4 47.9 35.4 37.5
(2) W = B 26.3 26.3 19.5 21.2
(3) W = UtU

>
s 13.2 16.0 8.8 11.8

(4) Targt space inf. 45.5 47.8 35.0 37.9
(5) Regression 46.8 43.3 33.9 35.4

Table 3: Ablation test results: Precision@1 for BLI
on the VecMap dataset.

Results on VecMap Dataset: Table 2 reports the
results on the VecMap dataset. We observe that
GeoMM obtains the best performance in each
language pair, surpassing state-of-the-art results
reported on this dataset. GeoMM also outperforms
GPA (Kementchedjhieva et al., 2018), which also
learns bilingual embeddings in a latent space.

6.2 Ablation Tests
We next study the impact of different components
of our framework by varying one component at a
time. The results of these tests on VecMap dataset
are shown in Table 3 and are discussed below.

(1) Classification with unconstrained W. We
learn the transformation W directly as
follows:

min
W∈Rd×d

λ‖W‖2
F + ‖X>sW>Xt −Yst‖2

F .

(4)

The performance drops in this setting
compared with GeoMM, underlining the
importance of the proposed factorization and
the latent space representation. In addition,
the proposed factorization helps GeoMM
generalize to the multilingual setting
(GeoMMmulti). Further, we also observe that
the overall performance of this simple clas-
sification based model is better than recent
supervised approaches such as Procrustes,
MSF-ISF (Artetxe et al., 2018a), and GPA
(Kementchedjhieva et al., 2018). This sug-
gests that a classification model is better
suited for the BLI task.

Next, we look at both components of the
factorization.

(2) Without language-specific rotations. We
enforceUs = Ut = I in (1) for GeoMM, i.e.,
W=B. We observe a significant drop in per-
formance, which highlights the need for align-
ing the feature space of different languages.

(3) Without similarity metric. We enforce B =
I in (1) for GeoMM, i.e., W = UtU

>
s .

It can be observed that the results are
poor, which underlines the importance of
a suitable similarity metric in the proposed
classification model.

(4) Target space inference. We learn W =
UtBU>s by solving (1), as in GeoMM.
During the retrieval stage, the similarity
between embeddings is computed in the
target space, i.e., given embeddings x and
z from the source and target languages,
respectively, we compute the similarity of
the (normalized) vectors Wx and z. It should
be noted that GeoMM computes similarity
of x and z in the latent space, i.e., it
computes the similarity of the (normalized)
vectors B

1
2U>s x and B

1
2U>t z, respectively.

We observe that inference in the target space
degrades the performance. This shows that
the latent space representation captures useful
information and allows GeoMM to obtain
much better accuracy.

(5) Regression with proposed factorization.
We pose BLI as a regression problem, as
done in previous approaches, by employing
the following loss function: ‖UtBU>sXs −
Xt‖2

F . We observe that its performance
is worse than the classification baseline
(W ∈ Rd×d). The classification setting
directly models the similarity score via the
loss function, and hence corresponds with
inference more closely. This result further
reinforces the observation made in the first
ablation test.

To summarize, the proposed modeling
choices are better than the alternatives com-
pared in the ablation tests.

6.3 Cross-lingual Word Similarity
The results on the cross-lingual word similarity
task using the SemEval 2017 dataset (Camacho-
Collados et al., 2017) are shown in Table 4.
We observe that GeoMM performs better than
Procrustes, MSF, and the SemEval 2017 baseline
NASARI (Camacho-Collados et al., 2016). It is
also competitive with Luminoso run2 (Speer and
Lowry-Duda, 2017), the best reported system on
this dataset. It should be noted that NASARI and
luminoso run2 use additional knowledge sources
like BabelNet and ConceptNet.
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Method en-es en-de en-it
NASARI 0.64 0.60 0.65
Luminoso run2 0.75 0.76 0.77

Procrustes 0.72 0.72 0.71
MSF 0.73 0.74 0.73
Joulin et al. (2018) 0.71 0.71 0.71
GeoMM 0.73 0.74 0.74

Table 4: Pearson correlation coefficient for the
SemEval 2017 cross-lingual word similarity task.

Method Accuracy (%)

Original English embeddings 76.66
Procrustes 76.66
MSF 76.59
GeoMM 75.21

Table 5: Results on the monolingual word analogy
task.

6.4 Monolingual Word Analogy
Table 5 shows the results on the English mono-
lingual analogy task after obtaining it→en map-
ping on the VecMap dataset (Mikolov et al.,
2013a; Artetxe et al., 2016). We observe that
there is no significant drop in the monolingual
performance by the use of non-orthogonal map-
pings compared with monolingual embeddings as
well as other bilingual embeddings (Procrustes
and MSF).

7 Indirect Translation: Results
and Analysis

In the previous sections, we have established the
efficacy of our approach for a bilingual mapping
problem when a bilingual dictionary between
the source and target languages is available. We
also showed that our proposed multilingual gen-
eralization (Section 3.4) performs well in this
scenario. In this section, we explore if our multi-
lingual generalization is beneficial when a bi-
lingual dictionary is not available between the
source and the target, in other words, indirect
translation. For this evaluation, our algorithm
learns a single model for various language pairs
such that word embeddings of different languages
are transformed to a common latent space.

7.1 Evaluation Task: One-hop Translation
We consider the BLI task from language Lsrc

to language Ltgt in the absence of a bilingual
lexicon between them. We, however, assume the

Method fr-it-pt it-de-es es-pt-fr avg.

SL-unsup 74.1 86.4 84.6 81.7

Composition
Procrustes 74.2 81.9 82.5 79.5
MSF 75.3 81.9 82.7 80.0
GeoMM 77.7 84.1 84.3 82.0

Pipeline
Procrustes 72.5 61.6 79.9 71.3
MSF 75.9 64.5 82.5 74.3
GeoMM 75.9 62.5 81.7 73.4

GeoMMmulti 80.1 86.8 85.6 84.2

Table 6: Indirect translation: Precision@1 for BLI.

availability of lexicons for Lsrc-Lpvt and Lpvt-Ltgt,
where Lpvt is a pivot language.

As baselines, we adapt any supervised bilingual
approach (Procrustes, MSF, and the proposed
GeoMM) to the one-hop translation setting by
considering their following variants:

• Composition (cmp): Using the given bi-
lingual approach, we learn the Lsrc → Lpvt

and Lpvt → Ltgt transformations as W1 and
W2, respectively. Given an embedding x
from Lsrc, the corresponding embedding in
Ltgt is obtained by a composition of the trans-
formations, i.e., W2W1x. This is equivalent
to computing the similarity of Lsrc and Ltgt

embeddings in the Lpvt embedding space.
Recently, Smith et al. (2017a) explored this
technique with the Procrustes algorithm.

• Pipeline (pip): Using the given bilingual
approach, we learn the Lsrc → Lpvt and
Lpvt → Ltgt transformations as W1 and W2,
respectively. Given a word embedding x
from Lsrc, we infer its translation embedding
z inLpvt. Then, the corresponding embedding
of x in Ltgt is W2z.

As discussed in Section 3.4, our framework
allows the flexibility to jointly learn the com-
mon latent space of multiple languages, given
bilingual dictionaries of multiple language pairs.
Our multilingual approach, GeoMMmulti, views
this setting as a graph with three nodes {Lsrc,
Ltgt, Lpvt} and two edges {Lsrc-Lpvt, Lpvt-Ltgt}
(dictionaries).

7.2 Experimental Settings
We experiment with the following one-hop trans-
lation cases: (a) fr-it-pt, (b) it-de-es, and (c)
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Method en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en en-it it-en avg.
RCSLS 84.1 86.3 83.3 84.1 79.1 76.3 57.9 67.2 45.9 46.4 45.1 38.3 66.2
GeoMM 81.9 85.5 82.1 84.2 74.9 76.7 52.8 67.6 49.1 45.3 48.3 41.2 65.8
GeoMMsemi 82.7 86.7 82.8 84.9 76.4 76.7 53.2 68.2 48.5 46.1 50.0 42.6 66.6

Table 7: Comparison of GeoMM and GeoMMsemi with RCSLS (Joulin et al., 2018). Precision@1 for
BLI is reported. The results of RCSLS are reported in the original paper. The results of language pairs
en-it and it-en are on the VecMap dataset, while others are on the MUSE dataset.

es-pt-fr (read the triplets as Lsrc-Lpvt -Ltgt ). The
training/test dictionaries and the word embeddings
are from the MUSE dataset. In order to minimize
direct transfer of information from Lsrc to Ltgt,
we generate Lsrc-Lpvt and Lpvt-Ltgt training dic-
tionaries such that they do not have any Lpvt word
in common. The training dictionaries have the
same size as theLsrc-Lpvt andLpvt-Ltgt dictionaries
provided in the MUSE dataset while the test
dictionaries have 1,500 entries.

7.3 Results and Analysis
Table 6 shows the results of the one-hop trans-
lation experiments. We observe that GeoMMmulti

outperforms pivoting methods (cmp and pip) built
on top of MSF and Procrustes for all language
pairs. It should be noted that pivoting may lead
to cascading of errors in the solution, whereas
learning a common embedding space jointly miti-
gates this disadvantage. This is reaffirmed by our-
observation that GeoMMmulti performs significantly
better than GeoMM (cmp) and GeoMM (pip).

Since unsupervised methods have been shown
to be competitive with supervised methods, they
can be an alternative to pivoting. Indeed, we
observe that the unsupervised method SL-unsup
is better than the pivoting methods, although
it used no bilingual dictionaries. On the other
hand, GeoMMmulti is better than the unsupervised
methods too. It should be noted that the un-
supervised methods use much larger vocabulary
than GeoMMmulti during the training stage.

We also experimented with scenarios where
some words from Lpvt occur in both Lsrc-Lpvt and
Lpvt-Ltgt training dictionaries. In these cases too,
we observed that GeoMMmulti perform better than
other methods. We have not included these results
because of space constraints.

8 Semi-supervised GeoMM

In this section, we discuss an extension of
GeoMM, which benefits from unlabeled data. For

Method en-it en-de en-fi en-es avg.
GeoMM 48.3 49.3 36.1 39.3 43.3
GeoMMsemi 50.0 51.3 36.2 39.7 44.3

Table 8: Precision@1 for BLI on the VecMap
dataset.

the bilingual mapping problem, unlabeled data
is available in the form of vocabulary lists for
both the source and target languages. Existing
unsupervised and semi-supervised techniques
(Artetxe et al., 2017, 2018b; Joulin et al., 2018;
Hoshen and Wolf, 2018) have an iterative refine-
ment procedure that employs the vocabulary lists
to augment the dictionary with positive or negative
mappings.

Given a seed bilingual dictionary, we imple-
ment a bootstrapping procedure that iterates over
the following two steps until convergence:

1. Learn the GeoMM model by solving the
proposed formulation (1) with the current
bilingual dictionary.

2. Compute a new bilingual dictionary from the
vocabulary lists, using the (current) GeoMM
model for retrieval. The seed dictionary along
with this new dictionary is used in the next
iteration.

In order to keep the computational cost low, we
restrict the vocabulary list to k most frequent
words for both the languages (Artetxe et al.,
2018b; Hoshen and Wolf, 2018). In addition,
we perform bidirectional dictionary induction
(Artetxe et al., 2018b; Hoshen and Wolf, 2018).
We track the model’s performance on a validation
set to avoid overfitting and use it as a criterion for
convergence of the bootstrap procedure.

We evaluate the proposed semi-supervised
GeoMM algorithm (referred to as GeoMMsemi)
on the bilingual lexicon induction task on MUSE
and VecMap datasets. The bilingual dictionary for
training is split 80/20 into the seed dictionary
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and the validation set. We set k = 25,000, which
works well in practice.

We compare GeoMMsemi with RCSLS, a re-
cently proposed state-of-the-art semi-supervised
algorithm by Joulin et al. (2018). RCSLS directly
optimizes the CSLS similarity score (Conneau
et al., 2018), which is used during retrieval
stage for GeoMM, among other algorithms. On
the other hand, GeoMMsemi optimizes a simpler
classification-based square loss function (see
Section 3.3). In addition to the training dictionary,
RCSLS uses the full vocabulary list of the source
and target languages (200,000 words each) during
training.

The results are reported in Table 7. We observe
that the overall performance of GeoMMsemi is
slightly better than RCSLS. In addition, our
supervised approach GeoMM performs slightly
worse than RCSLS, although it does not have the
advantage of learning from unlabeled data, as is
the case for RCSLS and GeoMMsemi. We also
notice that GeoMMsemi improves on GeoMM in
almost all language pairs.

We also evaluate GeoMMsemi on the VecMap
dataset. The results are reported in Table 8. To
the best of our knowledge, GeoMMsemi obtains
state-of-the-art results on the VecMap dataset.

9 Conclusion and Future Work

In this work, we develop a framework for learning
multilingual word embeddings by aligning the
embeddings for various languages in a common
space and inducing a Mahalanobis similarity
metric in the common space. We view the trans-
lation of embeddings from one language to another
as a series of geometrical transformations and
jointly learn the language-specific orthogonal
rotations and the symmetric positive definite ma-
trix representing the Mahalanobis metric. Learn-
ing such transformations can also be viewed
as learning a suitable common latent space for
multiple languages. We formulate the problem in
the Riemannian optimization framework, which
models the above transformations efficiently.

We evaluate our bilingual and multilingual al-
gorithms on the bilingual lexicon induction and
the cross-lingual word similarity tasks. The results
show that our algorithm outperforms existing
approaches on multiple datasets. In addition, we
demonstrate the efficacy of our multilingual
algorithm in a one-hop translation setting for

bilingual lexicon induction, in which a direct
dictionary between the source and target languages
is not available. The semi-supervised extension
of our algorithm shows that our framework can
leverage unlabeled data to obtain further improve-
ments. Our analysis shows that the combination
of the proposed transformations, inference in the
induced latent space, and modeling the problem
in classification setting allows the proposed
approach to achieve state-of-the-art performance.

In future, an unsupervised extension to our
approach can be explored. Optimizing the CSLS
loss function (Joulin et al., 2018) within our
framework can be investigated to address the
hubness problem. We plan to work on downstream
applications like text classification, machine
translation, etc., which may potentially benefit
from the proposed latent space representation of
multiple languages by sharing annotated resources
across languages.
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