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Abstract

Neural machine translation (NMT) aims at
solving machine translation (MT) problems
using neural networks and has exhibited
promising results in recent years. However,
most of the existing NMT models are shallow
and there is still a performance gap between a
single NMT model and the best conventional
MT system. In this work, we introduce a
new type of linear connections, named fast-
forward connections, based on deep Long
Short-Term Memory (LSTM) networks, and
an interleaved bi-directional architecture for
stacking the LSTM layers. Fast-forward con-
nections play an essential role in propagat-
ing the gradients and building a deep topol-
ogy of depth 16. On the WMT’14 English-
to-French task, we achieve BLEU=37.7 with
a single attention model, which outperforms
the corresponding single shallow model by 6.2
BLEU points. This is the first time that a sin-
gle NMT model achieves state-of-the-art per-
formance and outperforms the best conven-
tional model by 0.7 BLEU points. We can
still achieve BLEU=36.3 even without using
an attention mechanism. After special han-
dling of unknown words and model ensem-
bling, we obtain the best score reported to date
on this task with BLEU=40.4. Our models are
also validated on the more difficult WMT’14
English-to-German task.

1 Introduction

Neural machine translation (NMT) has attracted a
lot of interest in solving the machine translation
(MT) problem in recent years (Kalchbrenner and

Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015). Unlike conventional statistical ma-
chine translation (SMT) systems (Koehn et al.,
2003; Durrani et al., 2014) which consist of multi-
ple separately tuned components, NMT models en-
code the source sequence into continuous represen-
tation space and generate the target sequence in an
end-to-end fashon. Moreover, NMT models can
also be easily adapted to other tasks such as dialog
systems (Vinyals and Le, 2015), question answering
systems (Yu et al., 2015) and image caption genera-
tion (Mao et al., 2015).

In general, there are two types of NMT topolo-
gies: the encoder-decoder network (Sutskever et al.,
2014) and the attention network (Bahdanau et al.,
2015). The encoder-decoder network represents the
source sequence with a fixed dimensional vector and
the target sequence is generated from this vector
word by word. The attention network uses the repre-
sentations from all time steps of the input sequence
to build a detailed relationship between the target
words and the input words. Recent results show that
the systems based on these models can achieve sim-
ilar performance to conventional SMT systems (Lu-
ong et al., 2015; Jean et al., 2015).

However, a single neural model of either of the
above types has not been competitive with the best
conventional system (Durrani et al., 2014) when
evaluated on the WMT’14 English-to-French task.
The best BLEU score from a single model with
six layers is only 31.5 (Luong et al., 2015) while
the conventional method of (Durrani et al., 2014)
achieves 37.0.

We focus on improving the single model perfor-
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mance by increasing the model depth. Deep topol-
ogy has been proven to outperform the shallow ar-
chitecture in computer vision. In the past two years
the top positions of the ImageNet contest have al-
ways been occupied by systems with tens or even
hundreds of layers (Szegedy et al., 2015; He et al.,
2016). But in NMT, the biggest depth used success-
fully is only six (Luong et al., 2015). We attribute
this problem to the properties of the Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) which is widely used in NMT. In the
LSTM, there are more non-linear activations than in
convolution layers. These activations significantly
decrease the magnitude of the gradient in the deep
topology, especially when the gradient propagates
in recurrent form. There are also many efforts to
increase the depth of the LSTM such as the work by
Kalchbrenner et al. (2016), where the shortcuts do
not avoid the nonlinear and recurrent computation.

In this work, we introduce a new type of lin-
ear connections for multi-layer recurrent networks.
These connections, which are called fast-forward
connections, play an essential role in building a deep
topology with depth of 16. In addition, we in-
troduce an interleaved bi-directional architecture to
stack LSTM layers in the encoder. This topology
can be used for both the encoder-decoder network
and the attention network. On the WMT’14 English-
to-French task, this is the deepest NMT topology
that has ever been investigated. With our deep at-
tention model, the BLEU score can be improved to
37.7 outperforming the shallow model which has six
layers (Luong et al., 2015) by 6.2 BLEU points.
This is also the first time on this task that a single
NMT model achieves state-of-the-art performance
and outperforms the best conventional SMT sys-
tem (Durrani et al., 2014) with an improvement of
0.7. Even without using the attention mechanism,
we can still achieve 36.3 with a single model. After
model ensembling and unknown word processing,
the BLEU score can be further improved to 40.4.
When evaluated on the subset of the test corpus
without unknown words, our model achieves 41.4.
As a reference, previous work showed that oracle re-
scoring of the 1000-best sequences generated by the
SMT model can achieve the BLEU score of about
45 (Sutskever et al., 2014). Our models are also
validated on the more difficult WMT’14 English-to-

German task.

2 Neural Machine Translation

Neural machine translation aims at generating the
target word sequence y = {y1, . . . , yn} given the
source word sequence x = {x1, . . . , xm} with neu-
ral models. In this task, the likelihood p(y | x,θ)
of the target sequence will be maximized (Forcada
and Ñeco, 1997) with parameter θ to learn:

p(y | x;θ) =
m+1∏

j=1

p(yj | y0:j−1,x;θ) (1)

where y0:j−1 is the sub sequence from y0 to yj−1.
y0 and ym+1 denote the start mark and end mark of
target sequence respectively.

The process can be explicitly split into an encod-
ing part, a decoding part and the interface between
these two parts. In the encoding part, the source se-
quence is processed and transformed into a group of
vectors e = {e1, · · · , em} for each time step. Fur-
ther operations will be used at the interface part to
extract the final representation c of the source se-
quence from e. At the decoding step, the target se-
quence is generated from the representation c.

Recently, there have been two types of NMT mod-
els which are different in the interface part. In the
encoder-decoder model (Sutskever et al., 2014), a
single vector extracted from e is used as the rep-
resentation. In the attention model (Bahdanau et
al., 2015), c is dynamically obtained according to
the relationship between the target sequence and the
source sequence.

The recurrent neural network (RNN), or its spe-
cific form the LSTM, is generally used as the basic
unit of the encoding and decoding part. However,
the topology of most of the existing models is shal-
low. In the attention network, the encoding part and
the decoding part have only one LSTM layer respec-
tively. In the encoder-decoder network, researchers
have used at most six LSTM layers (Luong et al.,
2015). Because machine translation is a difficult
problem, we believe more complex encoding and
decoding architecture is needed for modeling the re-
lationship between the source sequence and the tar-
get sequence. In this work, we focus on enhancing
the complexity of the encoding/decoding architec-
ture by increasing the model depth.
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Deep neural models have been studied in a wide
range of problems. In computer vision, models
with more than ten convolution layers outperform
shallow ones on a series of image tasks in recent
years (Srivastava et al., 2015; He et al., 2016;
Szegedy et al., 2015). Different kinds of shortcut
connections are proposed to decrease the length of
the gradient propagation path. Training networks
based on LSTM layers, which are widely used in
language problems, is a much more challenging
task. Because of the existence of many more nonlin-
ear activations and the recurrent computation, gradi-
ent values are not stable and are generally smaller.
Following the same spirit for convolutional net-
works, a lot of effort has also been spent on training
deep LSTM networks. Yao et al. (2015) introduced
depth-gated shortcuts, connecting LSTM cells at ad-
jacent layers, to provide a fast way to propagate the
gradients. They validated the modification of these
shortcuts on an MT task and a language modeling
task. However, the best score was obtained using
models with three layers. Similarly, Kalchbrenner
et al. (2016) proposed a two dimensional structure
for the LSTM. Their structure decreases the number
of nonlinear activations and path length. However,
the gradient propagation still relies on the recurrent
computation. The investigations were also made on
question-answering to encode the questions, where
at most two LSTM layers were stacked (Hermann et
al., 2015).

Based on the above considerations, we propose
new connections to facilitate gradient propagation in
the following section.

3 Deep Topology

We build the deep LSTM network with the new pro-
posed linear connections. The shortest paths through
the proposed connections do not include any non-
linear transformations and do not rely on any recur-
rent computation. We call these connections fast-
forward connections. Within the deep topology, we
also introduce an interleaved bi-directional architec-
ture to stack the LSTM layers.

3.1 Network

Our entire deep neural network is shown in Fig. 2.
This topology can be divided into three parts: the

encoder part (P-E) on the left, the decoder part (P-
D) on the right and the interface between these two
parts (P-I) which extracts the representation of the
source sequence. We have two instantiations of
this topology: Deep-ED and Deep-Att, which corre-
spond to the extension of the encoder-decoder net-
work and the attention network respectively. Our
main innovation is the novel scheme for connecting
adjacent recurrent layers. We will start with the ba-
sic RNN model for the sake of clarity.
Recurrent layer: When an input sequence
{x1, . . . , xm} is given to a recurrent layer, the out-
put ht at each time step t can be computed as (see
Fig. 1 (a))

ht = σ(Wfxt +Wrht−1)

= RNN (Wfxt, ht−1)

= RNN (ft, ht−1), (2)

where the bias parameter is not included for simplic-
ity. We use a red circle and a blue empty square to
denote an input and a hidden state. A blue square
with a “-” denotes the previous hidden state. A dot-
ted line means that the hidden state is used recur-
rently. This computation can be equivalently split
into two consecutive steps:

• Feed-Forward computation: ft = Wfxt. Left
part in Fig. 1 (b). “f” block.

• Recurrent computation: RNN (ft, ht−1).
Right part and the sum operation (+) followed
by activation in Fig. 1 (b). “r” block.

For a deep topology with stacked recurrent layers,
the input of each block “f” at recurrent layer k (de-
noted by fk) is usually the output of block “r” at its
previous recurrent layer k − 1 (denoted by hk−1).
In our work, we add fast-forward connections (F-F
connections) which connect two feed-forward com-
putation blocks “f” of adjacent recurrent layers. It
means that each block “f” at recurrent layer k takes
both the outputs of block “f” and block “r” at its pre-
vious layer as input (Fig. 1 (c)). F-F connections are
denoted by dashed red lines in Fig. 1 (c) and Fig. 2.
The path of F-F connections contains neither non-
linear activations nor recurrent computation. It pro-
vides a fast path for information to propagate, so we
call this path fast-forward connections.
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Figure 1: RNN models. The recurrent use of a hidden
state is denoted by dotted lines. A “-” mark denotes
the hidden value of the previous time step. (a): Basic
RNN. (b): Basic RNN with intermediate computational
state and the sum operation (+) followed by activation. It
consists of block “f” and block “r”, and is equivalent to
(a). (c):Two stacked RNN layers with F-F connections
denoted by dashed red lines.

Additionally, in order to learn more temporal
dependencies, the sequences can be processed in
different directions at each pair of adjacent recurrent
layers. This is quantitatively expressed in Eq. 3:

fkt = W k
f · [fk−1

t , hk−1
t ], k > 1

fkt = W k
f xt k = 1

hkt = RNNk (fkt , h
k
t+(−1)k) (3)

The opposite directions are marked by the direction
term (−1)k. At the first recurrent layer, the block “f”
takes xt as the input. [ , ] denotes the concatenation
of vectors. This is shown in Fig. 1 (c). The two
changes are summarized here:

• We add a connection between fkt and fk−1
t .

Without fk−1
t , our model will be reduced to the

traditional stacked model.

• We alternate the RNN direction at different lay-
ers k with the direction term (−1)k. If we fix
the direction term to −1, all layers work in the
forward direction.

LSTM layer: In our experiments, instead of an
RNN, a specific type of recurrent layer called LSTM
(Hochreiter and Schmidhuber, 1997; Graves et al.,
2009) is used. The LSTM is structurally more

complex than the basic RNN in Eq. 2. We de-
fine the computation of the LSTM as a function
which maps the input f and its state-output pair
(h, s) at the previous time step to the current state-
output pair. The exact computations for (ht, st) =
LSTM(ft, ht−1, st−1) are the following:

[z, zρ, zφ, zπ] = ft +Wrht−1

st = σi(z) ◦ σg(zρ + st−1 ◦ θρ) +
σg(zφ + st−1 ◦ θφ) ◦ st−1

ht = σo(st) ◦ σg(zπ + st ◦ θπ) (4)

where [z, zρ, zφ, zπ] is the concatenation of four vec-
tors of equal size, ◦ means element-wise multiplica-
tion, σi is the input activation function, σo is the out-
put activation function, σg is the activation function
for gates, and Wr, θρ, θφ, and θπ are the parame-
ters of the LSTM. It is slightly different from the
standard notation in that we do not have a matrix to
multiply with the input f in our notation.

With this notation, we can write down the com-
putations for our deep bi-directional LSTM model
with F-F connections:

fkt =W k
f · [fk−1

t , hk−1
t ], k > 1

fkt =W k
f xt, k = 1

(hkt , s
k
t ) = LSTMk

(
fkt , h

k
t+(−1)k , s

k
t+(−1)k

)
(5)

where xt is the input to the deep bi-directional
LSTM model. For the encoder, xt is the embedding
of the tth word in the source sentence. For the de-
coder xt is the concatenation of the embedding of
the tth word in the target sentence and the encoder
representation for step t.

In our final model two additional operations are
used with Eq. 5, which is shown in Eq. 6. Half(f)
denotes the first half of the elements of f , and Dr(h)
is the dropout operation (Hinton et al., 2012) which
randomly sets an element of h to zero with a cer-
tain probability. The use of Half(·) is to reduce
the parameter size and does not affect the perfor-
mance. We observed noticeable performance degra-
dation when using only the first third of the elements
of “f”.

fkt =W k
f · [Half(fk−1

t ),Dr(hk−1
t )], k > 1 (6)

With the F-F connections, we build a fast channel
to propagate the gradients in the deep topology. F-F
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connections can accelerate the model convergence
and while improving the performance. A similar
idea was also used in (He et al., 2016; Zhou and
Xu, 2015).
Encoder: The LSTM layers are stacked following
Eq. 5. We call this type of encoder interleaved bi-
directional encoder. In addition, there are two sim-
ilar columns (a1 and a2) in the encoder part. Each
column consists of ne stacked LSTM layers. There
is no connection between the two columns. The first
layers of the two columns process the word repre-
sentations of the source sequence in different direc-
tions. At the last LSTM layers, there are two groups
of vectors representing the source sequence. The
group size is the same as the length of the input se-
quence.
Interface: Prior encoder-decoder models and atten-
tion models are different in their method of extract-
ing the representations of the source sequences. In
our work, as a consequence of the introduced F-F
connections, we have 4 output vectors (hne

t and fne
t

of both columns). The representations are modified
for both Deep-ED and Deep-Att.

For Deep-ED, et is static and consists of four
parts. 1: The last time step output hne

m of the
first column. 2: Max-operation Max(·) of hne

t

at all time steps of the second column, denoted
by Max(hne,a2

t ). Max(·) denotes obtaining the
maximal value for each dimension over t. 3:
Max(fne,a1

t ). 4: Max(fne,a2
t ). The max-operation

and last time step state extraction provide compli-
mentary information but do not affect the perfor-
mance much. et is used as the final representation
ct.

For Deep-Att, we do not need the above two op-
erations. We only concatenate the 4 output vectors
at each time step to obtain et, and a soft attention
mechanism (Bahdanau et al., 2015) is used to calcu-
late the final representation ct from et. et is summa-
rized as:

Deep-ED: et

[hne,a1
m ,Max(hne,a2

t ),Max(fne,a1
t ),Max(fne,a2

t )]

Deep-Att: et

[hne,a1
t , hne,a2

t , fne,a1
t , fne,a2

t ] (7)

Note that the vector dimensionality of f is four times

larger than that of h (see Eq. 4). ct is summarized as:

Deep-ED: ct = et, (const)

Deep-Att: ct =
m∑

t′=1

αt,t′Wpet′ (8)

αt,t′ is the normalized attention weight computed
by:

αt,t′ =
exp(a(Wpet′ , h

1,dec
t−1 ))

∑
t′′ exp(a(Wpet′′ , h

1,dec
t−1 ))

(9)

h1,dect−1 is the first hidden layer output in the decoding
part. a(·) is an alignment model described in (Bah-
danau et al., 2015). For Deep-Att, in order to re-
duce the memory cost, we linearly project (withWp)
the concatenated vector et to a vector with 1/4 di-
mension size, denoted by the (fully connected) block
“fc” in Fig. 2.
Decoder: The decoder follows Eq. 5 and Eq. 6 with
fixed direction term −1. At the first layer, we use
the following xt:

xt = [ct, yt−1] (10)

yt−1 is the target word embedding at the previous
time step and y0 is zero. There is a single column
of nd stacked LSTM layers. We also use the F-F
connections like those in the encoder and all layers
are in the forward direction. Note that at the last
LSTM layer, we only use ht to make the prediction
with a softmax layer.

Although the network is deep, the training tech-
nique is straightforward. We will describe this in the
next part.

3.2 Training technique
We take the parallel data as the only input without
using any monolingual data for either word repre-
sentation pre-training or language modeling. Be-
cause of the deep bi-directional structure, we do not
need to reverse the sequence order as Sutskever et
al. (2014).

The deep topology brings difficulties for the
model training, especially when first order methods
such as stochastic gradient descent (SGD) (LeCun
et al., 1998) are used. The parameters should be
properly initialized and the converging process can
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Figure 2: The network. It includes three parts from left to right: encoder part (P-E), interface (P-I) and decoder part
(P-D). We only show the topology of Deep-Att as an example. “f” and “r” blocks correspond to the feed-forward part
and the subsequent LSTM computation. The F-F connections are denoted by dashed red lines.

be slow. We tried several optimization techniques
such as AdaDelta (Zeiler, 2012), RMSProp (Tiele-
man and Hinton, 2012) and Adam (Kingma and
Ba, 2015). We found that all of them were able to
speed up the process a lot compared to simple SGD
while no significant performance difference was ob-
served among them. In this work, we chose Adam
for model training and do not present a detailed com-
parison with other optimization methods.

Dropout (Hinton et al., 2012) is also used to avoid
over-fitting. It is utilized on the LSTM nodes hkt
(See Eq. 5) with a ratio of pd for both the encoder
and decoder.

During the whole model training process, we keep
all hyper parameters fixed without any intermediate
interruption. The hyper parameters are selected ac-
cording to the performance on the development set.
For such a deep and large network, it is not easy to
determine the tuning strategy and this will be con-
sidered in future work.

3.3 Generation

We use the common left-to-right beam-search
method for sequence generation. At each time step
t, the word yt can be predicted by:

ŷt = arg max
y

P(y|ŷ0:t−1,x;θ) (11)

where ŷt is the predicted target word. ŷ0:t−1 is the
generated sequence from time step 0 to t − 1. We
keep nb best candidates according to Eq. 11 at each

time step, until the end of sentence mark is gener-
ated. The hypotheses are ranked by the total like-
lihood of the generated sequence, although normal-
ized likelihood is used in some works (Jean et al.,
2015).

4 Experiments

We evaluate our method mainly on the widely used
WMT’14 English-to-French translation task. In or-
der to validate our model on more difficult lan-
guage pairs, we also provide results on the WMT’14
English-to-German translation task. Our models are
implemented in the PADDLE (PArallel Distributed
Deep LEarning) platform.

4.1 Data sets
For both tasks, we use the full WMT’14 parallel cor-
pus as our training data. The detailed data sets are
listed below:

• English-to-French: Europarl v7, Common
Crawl, UN, News Commentary, Gigaword

• English-to-German: Europarl v7, Common
Crawl, News Commentary

In total, the English-to-French corpus includes 36
million sentence pairs, and the English-to-German
corpus includes 4.5 million sentence pairs. The
news-test-2012 and news-test-2013 are concate-
nated as our development set, and the news-test-
2014 is the test set. Our data partition is consistent
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with previous works on NMT (Luong et al., 2015;
Jean et al., 2015) to ensure fair comparison.

For the source language, we select the most fre-
quent 200K words as the input vocabulary. For the
target language we select the most frequent 80K
French words and the most frequent 160K German
words as the output vocabulary. The full vocab-
ulary of the German corpus is larger (Jean et al.,
2015), so we select more German words to build the
target vocabulary. Out-of-vocabulary words are re-
placed with the unknown symbol 〈unk〉. For com-
plete comparison to previous work on the English-
to-French task, we also show the results with a
smaller vocabulary of 30K input words and 30K out-
put words on the sub train set with selected 12M par-
allel sequences (Schwenk, 2014; Sutskever et al.,
2014; Cho et al., 2014).

4.2 Model settings
We have two models as described above, named
Deep-ED and Deep-Att. Both models have exactly
the same configuration and layer size except the in-
terface part P-I.

We use 256 dimensional word embeddings for
both the source and target languages. All LSTM
layers, including the 2×ne layers in the encoder and
the nd layers in the decoder, have 512 memory cells.
The output layer size is the same as the size of the
target vocabulary. The dimension of ct is 5120 and
1280 for Deep-ED and Deep-Att respectively. For
each LSTM layer, the activation functions for gates,
inputs and outputs are sigmoid, tanh, and tanh re-
spectively.

Our network is narrow on word embeddings
and LSTM layers. Note that in previous work
(Sutskever et al., 2014; Bahdanau et al., 2015),
1000 dimensional word embeddings and 1000 di-
mensional LSTM layers are used. We also tried
larger scale models but did not obtain further im-
provements.

4.3 Optimization
Note that each LSTM layer includes two parts as
described in Eq. 3, feed-forward computation and
recurrent computation. Since there are non-linear
activations in the recurrent computation, a larger
learning rate lr = 5 × 10−4 is used, while for
the feed-forward computation a smaller learning rate

lf = 4 × 10−5 is used. Word embeddings and the
softmax layer also use this learning rate lf . We refer
all the parameters not used for recurrent computa-
tion as non-recurrent part of the model.

Because of the large model size, we use strong L2

regularization to constrain the parameter matrix v in
the following way:

v ← v − l · (g + r · v) (12)

Here r is the regularization strength, l is the corre-
sponding learning rate, g stands for the gradients of
v. The two embedding layers are not regularized.
All the other layers have the same r = 2.

The parameters of the recurrent computation part
are initialized to zero. All non-recurrent parts are
randomly initialized with zero mean and standard
deviation of 0.07. A detailed guide for setting hyper-
parameters can be found in (Bengio, 2012).

The dropout ratio pd is 0.1. In each batch, there
are 500 ∼ 800 sequences in our work. The exact
number depends on the sequence lengths and model
size. We also find that larger batch size results in
better convergence although the improvement is not
large. However, the largest batch size is constrained
by the GPU memory. We use 4 ∼ 8 GPU machines
(each has 4 K40 GPU cards) running for 10 days to
train the full model with parallelization at the data
batch level. It takes nearly 1.5 days for each pass.

One thing we want to emphasize here is that our
deep model is not sensitive to these settings. Small
variation does not affect the final performance.

4.4 Results

We evaluate the same way as previous NMT works
(Sutskever et al., 2014; Luong et al., 2015; Jean et
al., 2015). All reported BLEU scores are computed
with the multi-bleu.perl1 script which is also used in
the above works. The results are for tokenized and
case sensitive evaluation.

4.4.1 Single models
English-to-French: First we list our single model
results on the English-to-French task in Tab. 1. In
the first block we show the results with the full

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl
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corpus. The previous best single NMT encoder-
decoder model (Enc-Dec) with six layers achieves
BLEU=31.5 (Luong et al., 2015). From Deep-ED,
we obtain the BLEU score of 36.3, which outper-
forms Enc-Dec model by 4.8 BLEU points. This
result is even better than the ensemble result of eight
Enc-Dec models, which is 35.6 (Luong et al., 2015).
This shows that, in addition to the convolutional lay-
ers for computer vision, deep topologies can also
work for LSTM layers. For Deep-Att, the perfor-
mance is further improved to 37.7. We also list the
previous state-of-the-art performance from a con-
ventional SMT system (Durrani et al., 2014) with
the BLEU of 37.0. This is the first time that a single
NMT model trained in an end-to-end form beats the
best conventional system on this task.

We also show the results on the smaller data
set with 12M sentence pairs and 30K vocabulary
in the second block. The two attention mod-
els, RNNsearch (Bahdanau et al., 2015) and
RNNsearch-LV (Jean et al., 2015), achieve BLEU
scores of 28.5 and 32.7 respectively. Note that
RNNsearch-LV uses a large output vocabulary of
500K words based on the standard attention model
RNNsearch. We obtain BLEU=35.9 which outper-
forms its corresponding shallow model RNNsearch
by 7.4 BLEU points. The SMT result from
(Schwenk, 2014) is also listed and falls behind our
model by 2.6 BLEU points.

Methods Data Voc BLEU
Enc-Dec (Luong,2015) 36M 80K 31.5
SMT (Durrani,2014) 36M Full 37.0
Deep-ED (Ours) 36M 80K 36.3
Deep-Att (Ours) 36M 80K 37.7
RNNsearch (Bahdanau,2014) 12M 30K 28.5
RNNsearch-LV (Jean,2015) 12M 500K 32.7
SMT (Schwenk,2014) 12M Full 33.3
Deep-Att (Ours) 12M 30K 35.9

Table 1: English-to-French task: BLEU scores of single
neural models. We also list the conventional SMT system
for comparison.

Moreover, during the generation process, we ob-
tained the best BLEU score with beam size = 3
(when the beam size is 2, there is only a 0.1 dif-
ference in BLEU score). This is different from other
works listed in Tab. 1, where the beam size is 12
(Jean et al., 2015; Sutskever et al., 2014). We at-

tribute this difference to the improved model per-
formance, where the ground truth generally exists
in the top hypothesis. Consequently, with the much
smaller beam size, the generation efficiency is sig-
nificantly improved.

Next we list the effect of the novel F-F connec-
tions in our Deep-Att model of shallow topology in
Tab. 2. When ne = 1 and nd = 1, the BLEU scores
are 31.2 without F-F and 32.3 with F-F. Note that the
model without F-F is exactly the standard attention
model (Bahdanau et al., 2015). Since there is only a
single layer, the use of F-F connections means that
at the interface part we include ft into the represen-
tation (see Eq. 7). We find F-F connections bring an
improvement of 1.1 in BLEU. After we increase our
model depth to ne = 2 and nd = 2, the improve-
ment is enlarged to 1.4. When the model is trained
with larger depth without F-F connections, we find
that the parameter exploding problem (Bengio et al.,
1994) happens so frequently that we could not finish
training. This suggests that F-F connections provide
a fast way for gradient propagation.

Models F-F ne nd BLEU
Deep-Att No 1 1 31.2
Deep-Att Yes 1 1 32.3
Deep-Att No 2 2 33.3
Deep-Att Yes 2 2 34.7

Table 2: The effect of F-F. We list the BLEU scores of
Deep-Att with and without F-F. Because of the param-
eter exploding problem, we can not list the model per-
formance of larger depth without F-F. For ne = 1 and
nd = 1, F-F connections only contribute to the represen-
tation at interface part (see Eq. 7).

Removing F-F connections also reduces the cor-
responding model size. In order to figure out the
effect of F-F comparing models with the same pa-
rameter size, we increase the LSTM layer width of
Deep-Att without F-F. In Tab. 3 we show that, after
using a two times larger LSTM layer width of 1024,
we can only obtain a BLEU score of 33.8, which
is still worse than the corresponding Deep-Att with
F-F.

We also notice that the interleaved bi-directional
encoder starts to work when the encoder depth is
larger than 1. The effect of the interleaved bi-
directional encoder is shown in Tab. 4. For our
largest model with ne = 9 and nd = 7, we compared
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Models F-F ne nd width BLEU
Deep-Att No 2 2 512 33.3
Deep-Att No 2 2 1024 33.8
Deep-Att Yes 2 2 512 34.7

Table 3: BLEU scores with different LSTM layer width
in Deep-Att. After using two times larger LSTM layer
width of 1024, we can only obtain BLEU score of 33.8.
It is still behind the corresponding Deep-Att with F-F.

the BLEU scores of the interleaved bi-directional
encoder and the uni-directional encoder (where all
LSTM layers work in forward direction). We find
there is a gap of about 1.5 points between these two
encoders for both Deep-Att and Deep-ED.

Models Encoder ne nd BLEU
Deep-Att Bi 9 7 37.7
Deep-Att Uni 9 7 36.2
Deep-ED Bi 9 7 36.3
Deep-ED Uni 9 7 34.9

Table 4: The effect of the interleaved bi-directional en-
coder. We list the BLEU scores of our largest Deep-Att
and Deep-ED models. The encoder term Bi denotes that
the interleaved bi-directional encoder is used. Uni de-
notes a model where all LSTM layers work in forward
direction.

Next we look into the effect of model depth. In
Tab. 5, starting from ne = 1 and nd = 1 and gradu-
ally increasing the model depth, we significantly in-
crease BLEU scores. With ne = 9 and nd = 7, the
best score for Deep-Att is 37.7. We tried to increase
the LSTM width based on this, but obtained little
improvement. As we stated in Sec.2, the complexity
of the encoder and decoder, which is related to the
model depth, is more important than the model size.
We also tried a larger depth, but the results started
to get worse. With our topology and training tech-
nique, ne = 9 and nd = 7 is the best depth we can
achieve.

The last line in Tab. 5 shows the BLEU score of
36.6 of our deepest model, where only one encod-
ing column (Col = 1) is used. We find a 1.1 BLEU
points degradation with a single encoding column.
Note that the uni-directional models in Tab. 4 with
uni-direction still have two encoding columns. In
order to find out whether this is caused by the de-
creased parameter size, we test a wider model with

Models F-F ne nd Col BLEU
Deep-Att Yes 1 1 2 32.3
Deep-Att Yes 2 2 2 34.7
Deep-Att Yes 5 3 2 36.0
Deep-Att Yes 9 7 2 37.7
Deep-Att Yes 9 7 1 36.6

Table 5: BLEU score of Deep-Att with different model
depth. With ne = 1 and nd = 1, F-F connections only
contribute to the representation at interface part where ft
is included (see Eq. 7).

1024 memory blocks for the LSTM layers. It is
shown in Tab. 6 that there is a minor improvement of
only 0.1. We attribute this to the complementary in-
formation provided by the double encoding column.

Models F-F ne nd Col width BLEU
Deep-Att Yes 9 7 2 512 37.7
Deep-Att Yes 9 7 1 512 36.6
Deep-Att Yes 9 7 1 1024 36.7

Table 6: Comparison of encoders with different number
of columns and LSTM layer width.

English-to-German: We also validate our deep
topology on the English-to-German task. The
English-to-German task is considered a relatively
more difficult task, because of the lower similarity
between these two languages. Since the German vo-
cabulary is much larger than the French vocabulary,
we select 160K most frequent words as the target vo-
cabulary. All the other hyper parameters are exactly
the same as those in the English-to-French task.

We list our single model Deep-Att performance in
Tab. 7. Our single model result with BLEU=20.6 is
similar to the conventional SMT result of 20.7 (Buck
et al., 2014). We also outperform the shallow at-
tention models as shown in the first two lines in
Tab. 7. All the results are consistent with those in
the English-to-French task.

4.4.2 Post processing
Two post processing techniques are used to im-

prove the performance further on the English-to-
French task.

First, three Deep-Att models are built for ensem-
ble results. They are initialized with different ran-
dom parameters; in addition, the training corpus
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Methods Data Voc BLEU
RNNsearch (Jean,2015) 4.5M 50K 16.5
RNNsearch-LV (Jean,2015) 4.5M 500K 16.9
SMT (Buck,2014) 4.5M Full 20.7
Deep-Att (Ours) 4.5M 160K 20.6

Table 7: English-to-German task: BLEU scores of single
neural models. We also list the conventional SMT system
for comparison.

for these models is shuffled with different random
seeds. We sum over the predicted probabilities of
the target words and normalize the final distribution
to generate the next word. It is shown in Tab. 8 that
the model ensemble can improve the performance
further to 38.9. In Luong et al. (2015) and Jean et
al. (2015) there are eight models for the best scores,
but we only use three models and we do not obtain
further gain from more models.

Methods Model Data Voc BLEU
Deep-ED Single 36M 80K 36.3
Deep-Att Single 36M 80K 37.7
Deep-Att Single+PosUnk 36M 80K 39.2
Deep-Att Ensemble 36M 80K 38.9
Deep-Att Ensemble+PosUnk 36M 80K 40.4
SMT Durrani, 2014 36M Full 37.0
Enc-Dec Ensemble+PosUnk 36M 80K 37.5

Table 8: BLEU scores of different models. The first
two blocks are our results of two single models and mod-
els with post processing. In the last block we list two
baselines of the best conventional SMT system and NMT
system.

Second, we recover the unknown words in the
generated sequences with the Positional Unknown
(PosUnk) model introduced in (Luong et al., 2015).
The full parallel corpus is used to obtain the word
mappings (Liang et al., 2006). We find this method
provides an additional 1.5 BLEU points, which is
consistent with the conclusion in Luong et al.
(2015). We obtain the new BLEU score of 39.2 with
a single Deep-Att model. For the ensemble models
of Deep-Att, the BLEU score rises to 40.4. In the
last two lines, we list the conventional SMT model
(Durrani et al., 2014) and the previous best neural
models based system Enc-Dec (Luong et al., 2015)
for comparison. We find our best score outperforms
the previous best score by nearly 3 points.

4.5 Analysis
4.5.1 Length

On the English-to-French task, we analyze the
effect of the source sentence length on our mod-
els as shown in Fig. 3. Here we show five curves:
our Deep-Att single model, our Deep-Att ensemble
model, our Deep-ED model, a previously proposed
Enc-Dec model with four layers (Sutskever et al.,
2014) and an SMT model (Durrani et al., 2014).
We find our Deep-Att model works better than the
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Figure 3: BLEU scores vs. source sequence length. Five
lines are our Deep-Att single model, Deep-Att ensem-
ble model, our Deep-ED model, previous Enc-Dec model
with four layers and SMT model.

previous two models (Enc-Dec and SMT) on nearly
all sentence lengths. It is also shown that for very
long sequences with length over 70 words, the per-
formance of our Deep-Att does not degrade, when
compared to another NMT model Enc-Dec. Our
Deep-ED also has much better performance than the
shallow Enc-Dec model on nearly all lengths, al-
though for long sequences it degrades and starts to
fall behind Deep-Att.

4.5.2 Unknown words
Next we look into the detail of the effect of un-

known words on the English-to-French task. We
select the subset without unknown words on target
sentences from the original test set. There are 1705
such sentences (56.8%). We compute the BLEU
scores on this subset and the results are shown in
Tab. 9. We also list the results from SMT model
(Durrani et al., 2014) as a comparison.

We find that the BLEU score of Deep-Att on this
subset rises to 40.3, which has a gap of 2.6 with
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Model Test set Ratio(%) BLEU
Deep-Att Full 100.0 37.7
Ensemble Full 100.0 38.9
SMT(Durrani) Full 100.0 37.0
Deep-Att Subset 56.8 40.3
Ensemble Subset 56.8 41.4
SMT(Durrani) Subset 56.8 37.5

Table 9: BLEU scores of the subset of the test set without
considering unknown words.
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Figure 4: Token error rate on train set vs. test set. Square:
Deep-Att (ne = 9, nd = 7). Circle: Deep-Att (ne = 5,
nd = 3). Triagle: Deep-Att (ne = 1, nd = 1).

the score 37.7 on the full test set. On this sub-
set, the SMT model achieves 37.5, which is simi-
lar to its score 37.0 on the full test set. This sug-
gests that the difficulty on this subset is not much
different from that on the full set. We therefore at-
tribute the larger gap for Deep-att to the existence
of unknown words. We also compute the BLEU
score on the subset of the ensemble model and ob-
tain 41.4. As a reference related to human perfor-
mance, in Sutskever et al. (2014), it has been tested
that the BLEU score of oracle re-scoring the LIUM
1000-best results (Schwenk, 2014) is 45.

4.5.3 Over-fitting

Deep models have more parameters, and thus
have a stronger ability to fit the large data set.
However, our experimental results suggest that deep
models are less prone to the problem of over-fitting.

In Fig. 4, we show three results from models
with a different depth on the English-to-French task.
These three models are evaluated by token error rate,
which is defined as the ratio of incorrectly predicted

words in the whole target sequence with correct his-
torical input. The curve with square marks corre-
sponds to Deep-Att with ne = 9 and nd = 7. The
curve with circle marks corresponds to ne = 5 and
nd = 3. The curve with triangle marks corresponds
to ne = 1 and nd = 1. We find that the deep model
has better performance on the test set when the token
error rate is the same as that of the shallow models
on the training set. This shows that, with decreased
token error rate, the deep model is more advanta-
geous in avoiding the over-fitting phenomenon. We
only plot the early training stage curves because,
during the late training stage, the curves are not
smooth.

5 Conclusion

With the introduction of fast-forward connections
to the deep LSTM network, we build a fast path
with neither non-linear transformations nor recur-
rent computation to propagate the gradients from the
top to the deep bottom. On this path, gradients de-
cay much slower compared to the standard deep net-
work. This enables us to build the deep topology of
NMT models.

We trained NMT models with depth of 16 in-
cluding 25 LSTM layers and evaluated them mainly
on the WMT’14 English-to-French translation task.
This is the deepest topology that has been in-
vestigated in the NMT area on this task. We
showed that our Deep-Att exhibits 6.2 BLEU points
improvement over the previous best single model,
achieving a 37.7 BLEU score. This single end-to-
end NMT model outperforms the best conventional
SMT system (Durrani et al., 2014) and achieves
a state-of-the-art performance. After utilizing un-
known word processing and model ensemble of
three models, we obtained a BLEU score of 40.4,
an improvement of 2.9 BLEU points over the pre-
vious best result. When evaluated on the subset of
the test corpus without unknown words, our model
achieves 41.4. Our model is also validated on the
more difficult English-to-German task.

Our model is also efficient in sequence genera-
tion. The best results from both a single model and
model ensemble are obtained with a beam size of
3, much smaller than previous NMT systems where
beam size is about 12 (Jean et al., 2015; Sutskever

381

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00105 by guest on 18 April 2024



et al., 2014). From our analysis, we find that deep
models are more advantageous for learning for long
sequences and that the deep topology is resistant to
the over-fitting problem.

We tried deeper models and did not obtain further
improvements with our current topology and train-
ing techniques. However, the depth of 16 is not
very deep compared to the models in computer vi-
sion (He et al., 2016). We believe we can benefit
from deeper models, with new designs of topologies
and training techniques, which remain as our future
work.
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