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Abstract

The analysis of crowdsourced annotations
in natural language processing is con-
cerned with identifying (1) gold standard
labels, (2) annotator accuracies and biases,
and (3) item difficulties and error patterns.
Traditionally, majority voting was used for
1, and coefficients of agreement for 2 and
3. Lately, model-based analysis of corpus
annotations have proven better at all three
tasks. But there has been relatively little
work comparing them on the same datasets.
This paper aims to fill this gap by ana-
lyzing six models of annotation, covering
different approaches to annotator ability,
item difficulty, and parameter pooling
(tying) across annotators and items. We
evaluate these models along four aspects:
comparison to gold labels, predictive accu-
racy for new annotations, annotator char-
acterization, and item difficulty, using four
datasets with varying degrees of noise in the
form of random (spammy) annotators. We
conclude with guidelines for model selec-
tion, application, and implementation.

1 Introduction
The standard methodology for analyzing crowd-
sourced data in NLP is based on majority vot-
ing (selecting the label chosen by the majority of
coders) and inter-annotator coefficients of agree-
ment, such as Cohen’s κ (Artstein and Poesio,
2008). However, aggregation by majority vote
implicitly assumes equal expertise among the
annotators. This assumption, though, has been re-
peatedly shown to be false in annotation prac-
tice (Poesio and Artstein, 2005; Passonneau and
Carpenter, 2014; Plank et al., 2014b). Chance-
adjusted coefficients of agreement also have many
shortcomings—for example, agreements in mis-
take, overly large chance-agreement in datasets
with skewed classes, or no annotator bias correc-
tion (Feinstein and Cicchetti, 1990; Passonneau
and Carpenter, 2014).

Research suggests that models of annotation
can solve these problems of standard practices when
applied to crowdsourcing (Dawid and Skene,
1979; Smyth et al., 1995; Raykar et al., 2010;
Hovy et al., 2013; Passonneau and Carpenter,
2014). Such probabilistic approaches allow us
to characterize the accuracy of the annotators
and correct for their bias, as well as account-
ing for item-level effects. They have been shown
to perform better than non-probabilistic alterna-
tives based on heuristic analysis or adjudication
(Quoc Viet Hung et al., 2013). But even though
a large number of such models has been proposed
(Carpenter, 2008; Whitehill et al., 2009; Raykar
et al., 2010; Hovy et al., 2013; Simpson et al.,
2013; Passonneau and Carpenter, 2014; Felt et al.,
2015a; Kamar et al., 2015; Moreno et al., 2015, in-
ter alia), it is not immediately obvious to potential
users how these models differ or, in fact, how they
should be applied at all. To our knowledge, the
literature comparing models of annotation is lim-
ited, focused exclusively on synthetic data (Quoc
Viet Hung et al., 2013) or using publicly available
implementations that constrain the experiments al-
most exclusively to binary annotations (Sheshadri
and Lease, 2013).

Contributions

• Our selection of six widely used models
(Dawid and Skene, 1979; Carpenter, 2008;
Hovy et al., 2013) covers models with vary-
ing degrees of complexity: pooled models,
which assume all annotators share the same
ability; unpooled models, which model in-
dividual annotator parameters; and partially
pooled models, which use a hierarchical
structure to let the level of pooling be dictated
by the data.

• We carry out the evaluation on four datasets with
varying degrees of sparsity and annotator
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Figure 1: Plate diagram for multinomial model.
The hyperparameters are left out.

accuracy in both gold-standard dependent
and independent settings.

• We use fully Bayesian posterior inference to
quantify the uncertainty in parameter esti-
mates.

• We provide guidelines for both model selec-
tion and implementation.

Our findings indicate that models which in-
clude annotator structure generally outperform
other models, though unpooled models can over-
fit. Several open-source implementations of each
model type are available to users.

2 Bayesian Annotation Models

All Bayesian models of annotation that we de-
scribe are generative: They provide a mechanism
to generate parameters θ characterizing the pro-
cess (annotator accuracies and biases, prevalence,
etc.) from the prior p(θ), then generate the ob-
served labels y from the parameters according to
the sampling distribution p(y|θ). Bayesian infer-
ence allows us to condition on some observed
data y to draw inferences about the parameters
θ; this is done through the posterior, p(θ|y).
The uncertainty in such inferences may then be
used in applications such as jointly training clas-
sifiers (Smyth et al., 1995; Raykar et al., 2010),
comparing crowdsourcing systems (Lease and
Kazai, 2011), or characterizing corpus accuracy
(Passonneau and Carpenter, 2014).

This section describes the six models we eval-
uate. These models are drawn from the litera-
ture, but some had to be generalized from binary
to multiclass annotations. The generalization nat-
urally comes with parameterization changes, al-
though these do not alter the fundamentals of the
models. (One aspect tied to the model parameter-
ization is the choice of priors. The guideline we
followed was to avoid injecting any class prefer-
ences a priori and let the data uncover this infor-
mation; see more in §3.)

Figure 2: Plate diagram of the Dawid and Skene model.

2.1 A Pooled Model
Multinomial (MULTINOM) The simplest Bayesian
model of annotation is the binomial model pro-
posed in Albert and Dodd (2004) and discussed
in Carpenter (2008). This model pools all annota-
tors (i.e., assumes they have the same ability; see
Figure 1).1 The generative process is:

• For every class k ∈ {1, 2, ...,K}:

– Draw class-level abilities
ζk ∼ Dirichlet(1K)2

• Draw class prevalence π ∼ Dirichlet(1K)

• For every item i ∈ {1, 2, ..., I}:

– Draw true class ci ∼ Categorical(π)

– For every position n ∈ {1, 2, ..., Ni}:
∗ Draw annotation
yi,n ∼ Categorical(ζci)

2.2 Unpooled Models

Dawid and Skene (D&S) The model proposed by
Dawid and Skene (1979) is, to our knowledge, the
first model-based approach to annotation proposed
in the literature.3 It has found wide application
(e.g., Kim and Ghahramani, 2012; Simpson et al.,
2013; Passonneau and Carpenter, 2014). It is an
unpooled model, namely, each annotator has their
own response parameters (see Figure 2), which are
given fixed priors. Its generative process is:

• For every annotator j ∈ {1, 2, ..., J}:

– For every class k ∈ {1, 2, ...,K}:
∗ Draw class annotator abilities
βj,k ∼ Dirichlet(1K)

1Carpenter (2008) parameterizes ability in terms of specificity
and sensitivity. For multiclass annotations, we generalize to a
full response matrix (Passonneau and Carpenter, 2014).

2Notation: 1K is a K-dimensional vector of 1 values.
3Dawid and Skene fit maximum likelihood estimates us-

ing expectation maximization (EM), but the model is easily
extended to include fixed prior information for regularization,
or hierarchical priors for fitting the prior jointly with the abil-
ity parameters and automatically performing partial pooling.
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Figure 3: Plate diagram for the MACE model.

• Draw class prevalence π ∼ Dirichlet(1K)

• For every item i ∈ {1, 2, ..., I}:

– Draw true class ci ∼ Categorical(π)

– For every position n ∈ {1, 2, ..., Ni}:
∗ Draw annotation
yi,n ∼ Categorical(βjj[i,n],ci)

4

Multi-Annotator Competence Estimation (MACE)
This model, introduced by Hovy et al. (2013),
takes into account the credibility of the annotators
and their spamming preference and strategy5 (see
Figure 3). This is another example of an unpooled
model, and possibly the model most widely
applied to linguistic data (e.g., Plank et al., 2014a;
Sabou et al., 2014; Habernal and Gurevych, 2016,
inter alia). Its generative process is:

• For every annotator j ∈ {1, 2, ..., J}:

– Draw spamming behavior
εj ∼ Dirichlet(10K)

– Draw credibility θj ∼ Beta(0.5, 0.5)

• For every item i ∈ {1, 2, ..., I}:

– Draw true class ci ∼ Uniform
– For every position n ∈ {1, 2, ..., Ni}:
∗ Draw a spamming indicator
si,n ∼ Bernoulli(1− θjj[i,n])
∗ If si,n = 0 then:
· yi,n = ci

∗ Else:
· yi,n ∼ Categorical(εjj[i,n])

2.3 Partially Pooled Models
Hierarchical Dawid and Skene (HIERD&S) In
this model, the fixed priors of Dawid and Skene
are replaced with hierarchical priors representing

4Notation: jj[i,n] gives the index of the annotator who
produced the n-th annotation on item i.

5That is, propensity to produce labels with malicious
intent.

Figure 4: Plate diagram for the hierarchical Dawid and
Skene model.

the overall population of annotators (see Figure 4).
This structure provides partial pooling, using in-
formation about the population to improve esti-
mates of individuals by regularizing toward the
population mean. This is particularly helpful with
low count data as found in many crowdsourcing
tasks (Gelman et al., 2013). The full generative
process is as follows:6

• For every class k ∈ {1, 2, ...,K}:

– Draw class ability means
ζk,k′ ∼ Normal(0, 1),∀k′ ∈ {1, ...,K}

– Draw class s.d.’s
Ωk,k′ ∼ HalfNormal(0, 1),∀k′

• For every annotator j ∈ {1, 2, ..., J}:

– For every class k ∈ {1, 2, ...,K}:
∗ Draw class annotator abilities
βj,k,k′ ∼ Normal(ζk,k′ ,Ωk,k′),∀k′

• Draw class prevalence π ∼ Dirichlet(1K)

• For every item i ∈ {1, 2, ..., I}:

– Draw true class ci ∼ Categorical(π)

– For every position n ∈ {1, 2, ..., Ni}:
∗ Draw annotation yi,n ∼

Categorical(softmax(βjj[i,n],ci))
7

Item Difficulty (ITEMDIFF) We also test an exten-
sion of the “Beta-Binomial by Item” model from
Carpenter (2008), which does not assume any an-
notator structure; instead, the annotations of an
item are made to depend on its intrinsic difficulty.
The model further assumes that item difficulties are
instances of class-level hierarchical difficulties
(see Figure 5). This is another example of a

6A two-class version of this model can be found in
Carpenter (2008) under the name “Beta-Binomial by Anno-
tator.”

7The argument of the softmax is a K-dimensional vector
of annotator abilities given the true class, i.e., βjj[i,n],ci =
(βjj[i,n],ci,1, ..., βjj[i,n],ci,K).
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Figure 5: Plate diagram for the item difficulty model.

partially pooled model. Its generative process is
presented here:

• For every class k ∈ {1, 2, ...,K}:

– Draw class difficulty means:
ηk,k′ ∼ Normal(0, 1),∀k′ ∈ {1, ...,K}

– Draw class s.d.’s
Xk,k′ ∼ HalfNormal(0, 1), ∀k′

• Draw class prevalence π ∼ Dirichlet(1K)

• For every item i ∈ {1, 2, ..., I}:

– Draw true class ci ∼ Categorical(π)

– Draw item difficulty θi,k ∼
Normal(ηci,k, Xci,k),∀k

– For every position n ∈ {1, 2, ..., Ni}:
∗ Draw annotation:
yi,n ∼ Categorical(softmax(θi))

Logistic Random Effects (LOGRNDEFF) The
last model is the Logistic Random Effects model
(Carpenter, 2008), which assumes the annotations
depend on both annotator abilities and item dif-
ficulties (see Figure 6). Both annotator and item
parameters are drawn from hierarchical priors for
partial pooling. Its generative process is given as:

• For every class k ∈ {1, 2, ...,K}:

– Draw class ability means
ζk,k′ ∼ Normal(0, 1), ∀k′ ∈ {1, ...,K}

– Draw class ability s.d.’s
Ωk,k′ ∼ HalfNormal(0, 1), ∀k′

– Draw class difficulty s.d.’s
Xk,k′ ∼ HalfNormal(0, 1), ∀k′

• For every annotator j ∈ {1, 2, ..., J}:

– For every class k ∈ {1, 2, ...,K}:
∗ Draw class annotator abilities
βj,k,k′ ∼ Normal(ζk,k′ ,Ωk,k′), ∀k′

• Draw class prevalence π ∼ Dirichlet(1K)

Figure 6: Plate diagram for the logistic random effects
model.

• For every item i ∈ {1, 2, ..., I}:

– Draw true class ci ∼ Categorical(π)

– Draw item difficulty:
θi,k ∼ Normal(0, Xci,k), ∀k

– For every position n ∈ {1, 2, ..., Ni}:
∗ Draw annotation yi,n ∼

Categorical(softmax(βjj[i,n],ci−θi))

3 Implementation of the Models

We implemented all models in this paper in Stan
(Carpenter et al., 2017), a tool for Bayesian
Inference based on Hamiltonian Monte Carlo.
Although the non-hierarchical models we present
can be fit with (penalized) maximum likeli-
hood (Dawid and Skene, 1979; Passonneau and
Carpenter, 2014),8 there are several advantages to
a Bayesian approach. First and foremost, it pro-
vides a mean for measuring predictive calibration
for forecasting future results. For a well-specified
model that matches the generative process,
Bayesian inference provides optimally calibrated
inferences (Bernardo and Smith, 2001); for only
roughly accurate models, calibration may be mea-
sured for model comparison (Gneiting et al.,
2007). Calibrated inference is critical for mak-
ing optimal decisions, as well as for forecast-
ing (Berger, 2013). A second major benefit of
Bayesian inference is its flexibility in combining
submodels in a computationally tractable manner.
For example, predictors or features might be

8Hierarchical models are challenging to fit with classical
methods; the standard approach, maximum marginal likeli-
hood, requires marginalizing the hierarchical parameters, fit-
ting those with an optimizer, then plugging the hierarchical
parameter estimates in and repeating the process on the coef-
ficients (Efron, 2012). This marginalization requires either a
custom approximation per model in terms of either quadra-
ture or Markov chain Monte Carlo to compute the nested
integral required for the marginal distribution that must be
optimized first (Martins et al., 2013).
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available to allow the simple categorical preva-
lence model to be replaced with a multilogistic
regression (Raykar et al., 2010), features of the
annotators may be used to convert that to a re-
gression model, or semi-supervised training might
be carried out by adding known gold-standard la-
bels (Van Pelt and Sorokin, 2012). Each model
can be implemented straightforwardly and fit ex-
actly (up to some degree of arithmetic precision)
using Markov chain Monte Carlo methods, al-
lowing a wide range of models to be evaluated.
This is largely because posteriors are much bet-
ter behaved than point estimates for hierarchical
models, which require custom solutions on a per-
model basis for fitting with classical approaches
(Rabe-Hesketh and Skrondal, 2008). Both of these
benefits make Bayesian inference much simpler
and more useful than classical point estimates and
standard errors.

Convergence is assessed in a standard fash-
ion using the approach proposed by Gelman and
Rubin (1992): For each model we run four chains
with diffuse initializations and verify that they
converge to the same mean and variances (using
the criterion R̂ < 1.1).

Hierarchical priors, when jointly fit with the rest
of the parameters, will be as strong and thus sup-
port as much pooling as evidenced by the data. For
fixed priors on simplexes (probability parameters
that must be non-negative and sum to 1.0), we use
uniform distributions (i.e., Dirichlet(1K)). For lo-
cation and scale parameters, we use weakly infor-
mative normal and half-normal priors that inform
the scale of the results, but are not otherwise sen-
sitive. As with all priors, they trade some bias for
variance and stabilize inferences when there is not
much data. The exception is MACE, for which we
used the originally recommended priors, to con-
form with the authors’ motivation.

All model implementations are available to
readers online at http://dali.eecs.
qmul.ac.uk/papers/supplementary_
material.zip.

4 Evaluation

The models of annotation discussed in this paper
find their application in multiple tasks: to label
items, characterize the annotators, or flag espe-
cially difficult items. This section lays out the met-
rics used in the evaluation of each of these tasks.

Dataset I N J K J/I I/J

WSD 177 1770 34 3
10 10 10
10 10 10

17 20 20
52 77 177

RTE 800 8000 164 2
10 10 10
10 10 10

20 20 20
49 20 800

TEMP 462 4620 76 2
10 10 10
10 10 10

10 10 16
61 50 462

PD 5892 43161 294 4
1 5 7
7 9 57

1 4 13 147
51 3395

Table 1: General statistics (I items, N observations, J
annotators, K classes) together with summary statis-
tics for the number of annotators per item (J/I) and
the number of items per annotator (I/J) (i.e., Min, 1st
Quartile, Median, Mean, 3rd Quartile, and Max).

4.1 Datasets
We evaluate on a collection of datasets reflect-
ing a variety of use-cases and conditions: binary
vs. multi-class classification; small vs. large num-
ber of annotators; sparse vs. abundant num-
ber of items per annotator / annotators per item;
and varying degrees of annotator quality (statis-
tics presented in Table 1). Three of the datasets—
WSD, RTE, and TEMP, created by Snow et al.
(2008)—are widely used in the literature on an-
notation models (Carpenter, 2008; Hovy et al.,
2013). In addition, we include the Phrase Detec-
tives 1.0 (PD) corpus (Chamberlain et al., 2016),
which differs in a number of key ways from the
Snow et al. (2008) datasets: It has a much larger
number of items and annotations, greater sparsity,
and a much greater likelihood of spamming due to
its collection via a game-with-a-purpose setting.
This dataset is also less artificial than the datasets
in Snow et al. (2008), which were created with
the express purpose of testing crowdsourcing. The
data consist of anaphoric annotations, which we
reduce to four general classes (DN/DO = discourse
new/old, PR = property, and NR = non-referring).
To ensure similarity with the Snow et al. (2008)
datasets, we also limit the coders to one annotation
per item (discarded data were mostly redundant
annotations). Furthermore, this corpus allows us
to evaluate on meta-data not usually available in
traditional crowdsourcing platforms, namely, in-
formation about confessed spammers and good,
established players.

4.2 Comparison Against a Gold Standard
The first model aspect we assess is how accu-
rately they identify the correct (“true”) label of
the items. The simplest way to do this is by com-
paring the inferred labels against a gold standard,
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using standard metrics such as Precision / Re-
call / F-measure, as done, for example, for the
evaluation of MACE in Hovy et al. (2013). We
check whether the reported differences are statis-
tically significant, using bootstrapping (the shift
method), a non-parametric two-sided test (Wilbur,
1994; Smucker et al., 2007). We use a signifi-
cance threshold of 0.05 and further report whether
the significance still holds after applying the
Bonferroni correction for type 1 errors.

This type of evaluation, however, presupposes
that a gold standard can be obtained. This as-
sumption has been questioned by studies show-
ing the extent of disagreement on annotation
even among experts (Poesio and Artstein, 2005;
Passonneau and Carpenter, 2014; Plank et al.,
2014b). This motivates exploring complementary
evaluation methods.

4.3 Predictive Accuracy
In the statistical analysis literature, posterior
predictions are a standard assessment method for
Bayesian models (Gelman et al., 2013). We measure
the predictive performance of each model using
the log predictive density (lpd), that is, log p(ỹ|y),
in a Bayesian K-fold cross-validation setting
(Piironen and Vehtari, 2017; Vehtari et al., 2017).
The set-up is straightforward: we partition the data
into K subsets, each subset formed by splitting
the annotations of each annotator into K random
folds (we choose K = 5). The splitting strategy
ensures that models that cannot handle predictions
for new annotators (i.e., unpooled models like
D&S and MACE) are nevertheless included in
the comparison. Concretely, we compute

lpd =

K∑
k=1

log p(ỹk|y(−k))

=
K∑
k=1

log

∫
p(ỹk, θ|y(−k))dθ

≈
K∑
k=1

log
1

M

M∑
m=1

p(ỹk|θ(k,m))

(1)

In Equation (1), y(−k) and ỹk represent the
items from the train and test data, for iteration k
of the cross validation, while θ(k,m) is one draw
from the posterior.

4.4 Annotators’ Characterization
A key property of most of these models is that
they provide a characterization of coder ability. In

the D&S model, for instance, each annotator is
modeled with a confusion matrix; Passonneau
and Carpenter (2014) showed how different types
of annotators (biased, spamming, adversarial)
can be identified by examining this matrix.
The same information is available in HIERD&S
and LOGRNDEFF, whereas MACE characterizes
coders by their level of credibility and spamming
preference. We discuss these parameters with the
help of the metadata provided by the PD corpus.

Some of the models (e.g., MULTINOM or
ITEMDIFF) do not explicitly model annotators.
However, an estimate of annotator accuracy can
be derived post-inference for all the models. Con-
cretely, we define the accuracy of an annotator
as the proportion of their annotations that match
the inferred item-classes. This follows the cal-
culation of gold-annotator accuracy (Hovy et al.,
2013), computed with respect to the gold standard.
Similar to Hovy et al. (2013), we report the cor-
relation between estimated and gold annotators’
accuracy.

4.5 Item Difficulty

Finally, the LOGRNDEFF model also provides an
estimate that can be used to assess item difficulty.
This parameter has an effect on the correctness
of the annotators: namely, there is a subtractive
relationship between the ability of an annotator
and the item-difficulty parameter. The “difficulty”
name is thus appropriate, although an examination
of this parameter alone does not explicitly mark
an item as difficult or easy. The ITEMDIFF model
does not model annotators and only uses the diffi-
culty parameter, but the name is slightly mislead-
ing because its probabilistic role changes in the
absence of the other parameter (i.e., it now shows
the most likely annotation classes for an item).
These observations motivate an independent mea-
sure of item difficulty, but there is no agreement
on what such a measure could be.

One approach is to relate the difficulty of an
item to the confidence a model has in assigning
it a label. This way, the difficulty of the items is
judged under the subjectivity of the models, which
in turn is influenced by their set of assumptions
and data fitness. As in Hovy et al. (2013), we mea-
sure the model’s confidence via entropy to filter
out the items the models are least confident in
(i.e., the more difficult ones) and report accuracy
trends.
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5 Results

This section assesses the six models along dif-
ferent dimensions. The results are compared
with those obtained with a simple majority vote
(MAJVOTE) baseline. We do not compare the re-
sults with non-probabilistic baselines as it has
already been shown (see, e.g., Quoc Viet Hung
et al., 2013) that they underperform compared
with a model of annotation.

We follow the evaluation tasks and metrics dis-
cussed in §4 and briefly summarized next. A core
task for which models of annotation are used is
to infer the correct interpretations from a crowd-
sourced dataset of annotations. This evaluation
is conducted first and consists of a comparison
against a gold standard. One problem with this as-
sessment is caused by ambiguity—previous stud-
ies indicating disagreement even among experts.
Because obtaining a true gold standard is question-
able, we further explore a complementary evalua-
tion, assessing the predictive performance of the
models, a standard evaluation approach from the
literature on Bayesian models. Another core task
models of annotation are used for is to character-
ize the accuracy of the annotators and their error
patterns. This is the third objective of this evalu-
ation. Finally, we conclude this section assessing
the ability of the models to correctly diagnose the
items for which potentially incorrect labels have
been inferred.

The PD data are too sparse to fit the models
with item-level difficulties (i.e., ITEMDIFF and
LOGRNDEFF). These models are therefore not
present in the evaluations conducted on the PD
corpus.

5.1 Comparison Against a Gold Standard

A core task models of annotation are used for is
to infer the correct interpretations from crowd-
annotated datasets. This section compares the
inferred interpretations with a gold standard.

Tables 2, 3 and 4 present the results.9 On WSD
and TEMP datasets (see Table 4), characterized by
a small number of items and annotators (statis-
tics in Table 1), the different model complexi-
ties result in no gains, all the models performing

9The results for MAJVOTE, HIERD&S, and
LOGRNDEFF we report match or slightly outperform
those reported by Carpenter (2008) on the RTE dataset.
Similar for MACE, across WSD, RTE, and TEMP datasets
(Hovy et al., 2013).

Model Result Statistical Significance

MULTINOM 0.89
D&S* HIERD&S*
LOGRNDEFF* MACE*

D&S 0.92
ITEMDIFF* MAJVOTE

MULTINOM*

HIERD&S 0.93
ITEMDIFF* MAJVOTE*
MULTINOM*

ITEMDIFF 0.89
LOGRNDEFF* MACE*
D&S* HIERD&S*

LOGRNDEFF 0.93
MAJVOTE* MULTINOM*
ITEMDIFF*

MACE 0.93
MAJVOTE* MULTINOM*
ITEMDIFF*

MAJVOTE 0.90
D&S HIERD&S*
LOGRNDEFF* MACE*

Table 2: RTE dataset results against the gold standard.
Both micro (accuracy) and macro (P, R, F) scores are
the same. * indicates that significance (0.05 threshold)
holds after applying the Bonferroni correction.

equivalently. Statistically significant differences
(0.05 threshold, plus Bonferroni correction for
type 1 errors; see §4.2 for details) are, however,
very much present in Tables 2 (RTE dataset) and
3 (PD dataset). Here the results are dominated
by the unpooled (D&S and MACE) and partially
pooled models (LOGRNDEFF, and HIERD&S,
except for PD, as discussed later in §6.1), which
assume some form of annotator structure. Further-
more, modeling the full annotator response matrix
leads in general to better results (e.g., D&S vs.
MACE on the PD dataset). Ignoring completely
any annotator structure is rarely appropriate, such
models failing to capture the different levels of
expertise the coders have—see the poor perfor-
mance of the unpooled MULTINOM model and of
the partially pooled ITEMDIFF model. Similarly,
the MAJVOTE baseline implicitly assumes equal
expertise among coders, leading to poor perfor-
mance results.

5.2 Predictive Accuracy

Ambiguity causes disagreement even among ex-
perts, affecting the reliability of existing gold
standards. This section presents a complementary
evaluation, namely, predictive accuracy. In a simi-
lar spirit to the results obtained in the comparison
against the gold standard, modeling the ability of
the annotators was also found to be essential for
a good predictive performance (results presented
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Accuracy (micro) F-measure (macro)

Model Result Statistical Significance Result Statistical Significance

MULTINOM 0.87 D&S* HIERD&S* MACE* MAJVOTE 0.79 D&S* HIERD&S* MACE* MAJVOTE*
D&S 0.94 HIERD&S* MACE* MAJVOTE* MULTINOM* 0.87 HIERD&S* MACE* MAJVOTE* MULTINOM*
HIERD&S 0.89 MACE* MAJVOTE* MULTINOM* D&S* 0.82 MAJVOTE* MULTINOM* D&S*
MACE 0.93 MAJVOTE* MULTINOM* D&S* HIERD&S* 0.83 MAJVOTE* MULTINOM* D&S*
MAJVOTE 0.88 MULTINOM D&S* HIERD&S* MACE* 0.73 MULTINOM* D&S* HIERD&S* MACE*

Precision (macro) Recall (macro)

Model Result Statistical Significance Result Statistical Significance

MULTINOM 0.73 D&S* HIERD&S* MACE* MAJVOTE* 0.85 HIERD&S* MAJVOTE*
D&S 0.88 HIERD&S* MACE* MULTINOM* 0.87 HIERD&S MACE MAJVOTE*
HIERD&S 0.76 MACE* MAJVOTE* MULTINOM* D&S* 0.89 MACE* MAJVOTE* MULTINOM* D&S
MACE 0.83 MAJVOTE MULTINOM* D&S* HIERD&S* 0.84 MAJVOTE* D&S HIERD&S*
MAJVOTE 0.87 MULTINOM* HIERD&S* MACE 0.63 MULTINOM* D&S* HIERD&S* MACE*

Table 3: PD dataset results against the gold standard. * indicates that significance holds after Bonferroni correction.

Dataset Model Accµ PM RM FM

WSD
ITEMDIFF

0.99 0.83 0.99 0.91
LOGRNDEFF

Others 0.99 0.89 1.00 0.94

TEMP
MAJVOTE 0.94 0.93 0.94 0.94

Others 0.94 0.94 0.94 0.94

Table 4: Results against the gold (µ= Micro; M = Macro).

in Table 5). However, in this type of evaluation,
the unpooled models can overfit, affecting their
performance (e.g., a model of higher complex-
ity like D&S, on a small dataset like WSD). The
partially pooled models avoid overfitting through
the hierarchical structure obtaining the best pre-
dictive accuracy. Ignoring the annotator structure
(ITEMDIFF and MULTINOM) leads to poor per-
formance on all datasets except for WSD, where
this assumption is roughly appropriate since all
the annotators have a very high proficiency (above
95%).

5.3 Annotators’ Characterization

Another core task models of annotation are used
for is to characterize the accuracy and bias of the
annotators.

We first assess the correlation between the esti-
mated and gold accuracy of the annotators. The re-
sults, presented in Table 6, follow the same pattern
to those obtained in §5.1: a better performance of
the unpooled (D&S and MACE10) and partially
pooled models (LOGRNDEFF and HIERD&S, ex-
cept for PD, as discussed later in §6.1). The results

10The results of our reimplementation match the published
ones (Hovy et al., 2013).

Model WSD RTE TEMP PD*

MULTINOM -0.75 -5.93 -5.84 -4.67
D&S -1.19 -4.98 -2.61 -2.99
HIERD&S -0.63 -4.71 -2.62 -3.02
ITEMDIFF -0.75 -5.97 -5.84 -
LOGRNDEFF -0.59 -4.79 -2.63 -
MACE -0.70 -4.86 -2.65 -3.52

Table 5: The log predictive density results, normalized
to a per-item rate (i.e., lpd/I). Larger values indicate
a better predictive performance. PD* is a subset of PD
such that each annotator has a number of annotations at
least as big as the number of folds.

are intuitive: A model that is accurate with respect
to the gold standard should also obtain high corre-
lation at annotator level.

The PD corpus also comes with a list of self-
confessed spammers and one of good, established
players (see Table 7 for a few details). Continuing
with the correlation analysis, an inspection of the
second-to-last column from Table 6 shows largely
accurate results for the list of spammers. On the
second category, however, the non-spammers (the
last column), we see large differences between
models, following the same pattern with the previ-
ous correlation results. An inspection of the spam-
mers’ annotations show an almost exclusive use
of the DN (discourse new) class, which is highly
prevalent in PD and easy for the models to infer;
the non-spammers, on the other hand, make use of
all the classes, making it more difficult to capture
their behavior.11

11In a typical coreference corpus, over 60% of mentions
are DN; thus, always choosing DN results in a good accuracy
level. The one-class preference is a common spamming be-
havior (Hovy et al., 2013; Passonneau and Carpenter, 2014).
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Model WSD RTE TEMP PD S NS

MAJVOTE 0.90 0.78 0.91 0.77 0.98 0.65
line MULTINOM 0.90 0.84 0.93 0.75 0.97 0.84
D&S 0.90 0.89 0.92 0.88 1.00 0.99
HIERD&S 0.90 0.90 0.92 0.76 1.00 0.91
ITEMDIFF 0.80 0.84 0.93 - - -
LOGRNDEFF 0.80 0.89 0.92 - - -
MACE 0.90 0.90 0.92 0.86 1.00 0.98

Table 6: Correlation between gold and estimated accu-
racy of annotators. The last two columns refer to the
list of known spammers and non-spammers in PD.

Type Size Gold accuracy quantiles

Spammers 7 0.42 0.55 0.74
Non-spammers 19 0.59 0.89 0.94

Table 7: Statistics on player types. Reported quantiles
are 2.5%, 50%, and 97.5%.

We further examine some useful parameter
estimates for each player type. We chose one
spammer and one non-spammer and discuss the
confusion matrix inferred by D&S, together with
the credibility and spamming preference given by
MACE. The two annotators were chosen to be rep-
resentative for their type. The selection of the mod-
els was guided by their two different approaches
to capturing the behavior of the annotators.

Table 8 presents the estimates for the annotator
selected from the list of spammers. Again, inspec-
tion of the confusion matrix shows that, irrespec-
tive of the true class, the spammer almost always
produces the DN label. The MACE estimates are
similar, allocating 0 credibility to this annotator,
and full spamming preference for the DN class.

In Table 9 we show the estimates for the anno-
tator chosen from the non-spammers list. Their
response matrix indicates an overall good perfor-
mance (see diagonal matrix), albeit with a con-
fusion of PR (property) for DN (discourse new),
which is not surprising given that indefinite NPs
(e.g., a policeman) are the most common type of
mention in both classes. MACE allocates large
credibility to this annotator and shows a similar
spamming preference for the DN class.

This discussion, as well as the quantiles from
Table 7, show that poor accuracy is not by it-
self a good indicator of spamming. A spammer
like the one discussed in this section can obtain
good performance by always choosing a class with
high frequency in the gold standard. At the same
time, a non-spammer may fail to recognize some
true classes correctly, but be very good on oth-
ers. Bayesian models of annotation allow captur-

D&S

βj NR DN PR DO

NR 0.03 0.92 0.03 0.03

DN 0.00 1.00 0.00 0.00

PR 0.01 0.98 0.01 0.01

DO 0.00 1.00 0.00 0.00

MACE εj
NR DN PR DO

0.00 0.99 0.00 0.00

θj 0.00

Table 8: Spammer analysis example. D&S provides a
confusion matrix; MACE shows the spamming prefer-
ence and the credibility.

D&S

βj NR DN PR DO

NR 0.79 0.07 0.07 0.07

DN 0.00 0.96 0.01 0.02

PR 0.03 0.21 0.72 0.04

DO 0.00 0.06 0.00 0.94

MACE εj
NR DN PR DO

0.09 0.52 0.17 0.22

θj 0.92

Table 9: A non-spammer analysis example. D&S pro-
vides a confusion matrix; MACE shows the spamming
preference and the credibility.

ing and exploiting these observations. For a model
like D&S, such a spammer presents no harm, as
their contribution towards any potential true class
of the item is the same and therefore cancels out.12

5.4 Filtering Using Model Confidence

This section assesses the ability of the models to
correctly diagnose the items for which potentially
incorrect labels have been inferred. Concretely, we
identify the items that the models are least confi-
dent in (measured using the entropy of the poste-
rior of the true class distribution) and present the
accuracy trends as we vary the proportion of fil-
tered out items.

Overall, the trends (Figures 7, 8 and 9) indicate
that filtering out the items with low confidence
improves the accuracy of all the models and across
all datasets.13

12Point also made by Passonneau and Carpenter (2014).
13The trends for MACE match the published ones. Also,

we left out the analysis on the WSD dataset, as the models
already obtain 99% accuracy without any filtering (see §5.1).
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Figure 7: Effect of filtering on RTE: accuracy (y-axis)
vs. proportion of data with lowest entropy (x-axis).

Figure 8: TEMP dataset: accuracy (y-axis) vs. propor-
tion of data with lowest entropy (x-axis).

6 Discussion

We found significant differences across a number
of dimensions between both the annotation models
and between the models and MAJVOTE.

6.1 Observations and Guidelines

The completely pooled model (MULTINOM) un-
derperforms in almost all types of evaluation and
all datasets. Its weakness derives from its core as-
sumption: It is rarely appropriate in crowdsourc-
ing to assume that all annotators have the same
ability.

The unpooled models (D&S and MACE) as-
sume each annotator has their own response pa-
rameter. These models can capture the accuracy
and bias of annotators, and perform well in
all evaluations against the gold standard. Lower
performance is obtained, however, on posterior
predictions: The higher complexity of unpooled
models results in overfitting, which affects their
predictive performance.

The partially pooled models (ITEMDIFF,
HIERD&S, and LOGRNDEFF) assume both

Figure 9: PD dataset: accuracy (y-axis) vs. proportion
of data with lowest entropy (x-axis).

individual and hierarchical structure (capturing
population behavior). These models achieve the
best of both worlds, letting the data determine the
level of pooling that is required: They asymptote
to the unpooled models if there is a lot of variance
among the individuals in the population, or to the
fully pooled models when the variance is very
low. This flexibility ensures good performance
both in the evaluations against the gold standard
and in terms of their predictive performance.

Across the different types of pooling, the mod-
els that assume some form of annotator structure
(D&S, MACE, LOGRNDEFF, and HIERD&S)
came out on top in all evaluations. The unpooled
models (D&S and MACE) register on par
performance with the partially pooled ones
(LOGRNDEFF and HIERD&S, except for the PD
dataset, as discussed later in this section) in the
evaluations against the gold standard, but as pre-
viously mentioned, can overfit, affecting their
predictive performance. Ignoring any annotator
structure (the pooled MULTINOM model, the par-
tially pooled ITEMDIFF model, or the MAJVOTE

baseline) leads generally to poor performance
results.

The approach we took in this paper is domain-
independent, that is, we did not assess and com-
pare models that use features extracted from the
data, even though it is known that when such fea-
tures are available, they are likely to help (Raykar
et al., 2010; Felt et al., 2015a; Kamar et al., 2015).
This is because a proper assessment of such mod-
els would also require a careful selection of the
features and how to include them into a model
of annotation. A bad (i.e., misspecified in the
statistical sense) domain model is going to hurt
more than help as it will bias the other estimates.
Providing guidelines for this feature-based analysis
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would have excessively expanded the scope of this
paper. But feature-based models of annotation are
extensions of the standard annotation-only mod-
els; thus, this paper can serve as a foundation for
the development of such models. A few exam-
ples of feature-based extensions of standard mod-
els of annotation are given in §7 to guide readers
who may want to try them out for their specific
task/domain.

The domain-independent approach we took in
this paper further implies that there are no dif-
ferences between applying these models to cor-
pus annotation or other crowdsourcing tasks. This
paper is focused on resource creation and does
not propose to investigate the performance of the
models in downstream tasks. However, previous
work already used such models of annotation for
NLP (Plank et al., 2014a; Sabou et al., 2014;
Habernal and Gurevych, 2016, image labeling
(Smyth et al., 1995; Kamar et al., 2015), or med-
ical (Albert and Dodd, 2004; Raykar et al., 2010)
tasks.

Although HIERD&S normally achieves the best
performance in all evaluations on the Snow et al.
(2008) datasets, on the PD data it is outper-
formed by the unpooled models (MACE and
D&S). To understand this discrepancy, note that
the datasets from Snow et al. (2008) were pro-
duced using Amazon Mechanical Turk, by mainly
highly skilled annotators; whereas the PD dataset
was produced in a game-with-a-purpose setting,
where most of the annotations were made by only
a handful of coders of high quality, the rest be-
ing produced by a large number of annotators with
much lower abilities. These observations point to
a single population of annotators in the former
datasets, and to two groups in the latter case. The
reason why the unpooled models (MACE and
D&S) outperform the partially pooled HIERD&S
model on the PD data is that this class of mod-
els assumes no population structure—hence, there
is no hierarchical influence; a multi-modal hierar-
chical prior in HIERD&S might be better suited
for the PD data. This further suggests that results
depend to some extent on the dataset specifics.
This does not alter the general guidelines made in
this paper.

6.2 Technical Notes

Posterior Curvature. In hierarchical models, a
complicated posterior curvature increases the dif-

ficulty of the sampling process affecting con-
vergence. This may happen when the data are
sparse or when there are large inter-group vari-
ances. One way to overcome this problem is to use
a non-centered parameterization (Betancourt and
Girolami 2015). This approach separates the lo-
cal parameters from their parents, easing the sam-
pling process. This often improves the effective
sample size and, ultimately, the convergence (i.e.,
lower R̂). The non-centered parameterization of-
fers an alternative but equivalent implementation
of a model. We found this essential to ensure a
robust implementation of the partially pooled
models.
Label Switching. The label switching problem
that occurs in mixture models is due to the like-
lihood’s invariance under the permutation of the
labels. This makes the models nonidentifiable.
Convergence cannot be directly assessed, because
the chains will no longer overlap. We use a gen-
eral solution to this problem from Gelman et al.
(2013): re-label the parameters, post-inference,
based on a permutation that minimizes some loss
function. For this survey, we used a small ran-
dom sample of the gold data (e.g., five items
per class) to find the permutation that maximizes
model accuracy for every chain-fit. We then re-
labeled the parameters of each chain according to
the chain-specific permutation before combining
them for convergence assessment. This ensures
model identifiability and gold alignment.

7 Related Work

Bayesian models of annotation share many char-
acteristics with so called item-response and ideal-
point models. A popular application of these
models is to analyze data associated with indi-
viduals and test items. A classic example is the
Rasch model (Rasch, 1993) which assumes that
the probability of a person being correct on a test
item is based on a subtractive relationship be-
tween their ability and the difficulty of the item.
The model takes a supervised approach to jointly
estimating the ability of the individuals and the
difficulty of the test items based on the correct-
ness of their responses. The models of annota-
tion we discussed in this paper are completely
unsupervised and infer, in addition to annotator
ability and/or item difficulty, the correct labels.
More details on item-response models are given in
Skrondal and Rabe-Hesketh (2004) and Gelman
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and Hill (2007). Item-response theory has also
been recently applied to NLP applications (Lalor
et al., 2016; Martınez-Plumed et al., 2016; Lalor
et al., 2017).

The models considered so far take into account
only the annotations. There is work, however, that
further exploits the features that can accompany
items. A popular example is the model introduced
by Raykar et al. (2010), where the true class of
an item is made to depend both on the annotations
and on a logistic regression model that are jointly
fit; essentially, the logistic regression replaces the
simple categorical model of prevalence. Felt et al.
(2014, 2015b) introduced similar models that also
modeled the predictors (features) and compared
them to other approaches (Felt et al., 2015a).
Kamar et al. (2015) account for task-specific fea-
ture effects on the annotations.

In §6.2, we discussed the label switching prob-
lem (Stephens, 2000) that many models of an-
notation suffer from. Other solutions proposed
in the literature include utilizing class-informative
priors, imposing ordering constraints (obvious
for univariate parameters; less so in multivariate
cases) (Gelman et al., 2013), or applying different
post-inference relabeling techniques (Felt et al.,
2014).

8 Conclusions

This study aims to promote the use of Bayesian
models of annotation by the NLP community.
These models offer substantial advantages over
both agreement statistics (used to judge coding
standards), and over majority-voting aggregation
to generate gold standards (even when used
with heuristic censoring or adjudication). To
provide assistance in this direction, we compare
six existing models of annotation with distinct
prior and likelihood structures (e.g., pooled,
unpooled, and partially pooled) and a diverse set
of effects (annotator ability, item difficulty, or a
subtractive relationship between the two). We use
various evaluation settings on four datasets, with
different levels of sparsity and annotator accuracy,
and report significant differences both among
the models, and between models and majority
voting. As importantly, we provide guidelines
to both aid users in the selection of the models
and to raise awareness of the technical aspects
essential to their implementation. We release all
models evaluated here as Stan implementations at

http://dali.eecs.qmul.ac.uk/paper/
supplementary_material.zip.
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