
Integrating Type Theory and Distributional
Semantics: A Case Study on Adjective–Noun
Compositions

Nicholas Asher∗
CNRS

Tim Van de Cruys∗
CNRS

Antoine Bride∗
Université Paul Sabatier

Márta Abrusán∗

CNRS

In this article, we explore an integration of a formal semantic approach to lexical meaning and an
approach based on distributional methods. First, we outline a formal semantic theory that aims
to combine the virtues of both formal and distributional frameworks. We then proceed to develop
an algebraic interpretation of that formal semantic theory and show how at least two kinds of
distributional models make this interpretation concrete. Focusing on the case of adjective–noun
composition, we compare several distributional models with respect to the semantic information
that a formal semantic theory would need, and we show how to integrate the information
provided by distributional models back into the formal semantic framework.

1. Introduction

Formal semantics (FS) has provided insightful models of composition and recently has
addressed issues of how composition may in turn affect the original meanings of lexical
items (Pustejovsky 1995; Partee 2010; Asher 2011). Type Composition Logic (TCL; Asher
2011) provides a detailed formal model of the interaction between composition and
lexical meaning in which the composition of two words w and w′ may shift the original
meanings of w and w′. For example, consider the case of an adjective like heavy and a
noun like traffic. TCL assigns a logical form to the adjective–noun combination heavy
traffic, λx.(O(heavy)(x) ∧M(traffic)(x)), where O is a functor induced by the noun that
outputs a meaning paraphrased as heavy for traffic. The M functor does something

∗ IRIT, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex 9.
E-mail: {nicholas.asher, tim.vandecruys, antoine.bride, marta.abrusan}@irit.fr.

Submission received: 10 April 2015; revised version received: 26 July 2016; accepted for publication:
8 August 2016.

doi:10.1162/COLI a 00264

© 2017 Association for Computational Linguistics

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

similar for the noun. Different types of adjectives will interact differently with the
meaning of the noun; for example, non-subsective adjectives like fake in fake dollar bill
output a meaning whose denotation has an empty intersection with the denotation
of the original noun but shares surface properties with things that are (e.g., [real]
dollar bills). TCL thus decomposes an adjective–noun combination into a conjunction
of two properties representing the contextual contributions of the noun and adjective.
This decomposition property allows TCL to predict non-trivial logical entailments just
from the form of adjective–noun compositions (in contrast to Montague’s higher order
approach, which requires meaning postulates), while also capturing the shiftiness of
lexical meaning, something that most formal semantic theories do not consider.

However, neither TCL nor the other FS theories mentioned provide a method for
constructing such functors or lexical meanings. In this article we develop two distribu-
tional semantic (DS) models able to provide such a method, in virtue of (i) TCL’s distinc-
tion between internal or conceptual content and external or referential content and (ii)
the close correspondence between the way TCL and these models treat composition—
in particular, the fact that these models share with TCL the decomposition property we
just mentioned. We show that such methods can furnish the appropriate TCL functors,
provided we take one big step: We identify TCL’s internal content with vectors, which
distributional methods use to represent word meaning. Functors introduced by TCL for
composition then correspond to vector transformations within distributional models.
We also show how to translate the results of these transformations back into TCL logical
forms. TCL logical forms will then entail non-trivial inferences based on DS lexical
information, while keeping the structural and conceptual advantages of a FS based
logical form.

We illustrate our approach with adjective–noun compositions because they are
simpler and better understood than other compositions. Such compositions do not
typically introduce scope-bearing elements like quantifiers, unlike the construction of
verb phrases, for instance. Also, the range of variation in adjective–noun composition
is better understood, than, say, the effects of composition in verbal predications, which
also involve more parameters that can potentially affect the composition.

2. Towards an Integration of DS and FS: The Formal Framework TCL

TCL Asher (2011) has three advantages compared with other FS theories for studying
the interactions between FS and DS: its use of types and its notion of internal content,
its commitment to the actuality of meaning shifts during composition, and its formal
model of meaning shift. However, TCL does not supply detailed information about
particular types, which is crucial to determining meaning shifts. This is where we turn
to DS for help.

2.1 Types and TCL’s Notion of Internal Content

In TCL, each word has a model-theoretic meaning that determines appropriate exten-
sions for expressions (at points of evaluation). This is TCL’s notion of external content,
which is the usual notion of content in FS theories. In addition, however, each word in
TCL has a type. Types are semantic objects and encode the “internal meaning” of the
expression associated with it. So, for instance, the external semantics or extension of the
word wine is a set of wine portions at some world and time, while the type or internal
meaning of wine is given by the features we associate with wine (e.g., it is a liquid, a
beverage, has alcohol, and has a particular taste). Internal semantics can also make use

704

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

of multi-modal information; thus olfactory and gustatory features can also play a role.
These features enable speakers to correctly judge in normal circumstances whether an
entity they experience falls under the extension of a term, though these judgments are
not always completely reliable. The notions of internal and external meaning and the
particular conception of how they interact are unique to TCL.

Types and internal content play an important role in TCL. They model selectional
restrictions and are used to guide composition. An irresolvable clash between the type
of a predicate and the type of its argument implies that the predication is semantically
anomalous. Types also guide TCL’s account of meaning shifts in predication. In TCL
types encode the correct usage of a term. This is very similar to what DS methods do.
However, TCL makes use of the lambda calculus for composition, a well-known and
well-understood formalism; and doing so depends upon a particular interpretation of
internal content based on a notion of justification. The correct usage and a speaker’s
mastery of the content of a term involves, among other things, an ability to justify,
when asked, the use of that term in a particular context, and mutatis mutandis, an ability
to justify the assertion of a predication in which a predicate applies to an individual
characterized in a certain way. In the case of a speaker’s assertion of a predication,
such a justification explains why the speaker takes the assertion to be true. Such jus-
tifications encode the features that speakers use to identify extensions of terms. The
reason these justifications are a part of linguistic mastery of expressions is that they are
a reliable guide to determining extensions. Such justifications constitute internal content
in TCL.

Modern type theories like TCL exploit a deep relation between proofs and types,
known as the Curry-Howard correspondence (Howard 1980). The Curry-Howard cor-
respondence shows that the notions of proof and types in the lambda calculus are
isomorphic, allowing one to identify types with proofs or proof schemas. TCL ex-
ploits this correspondence with justifications and types for natural language expres-
sions: Types and justifications are structurally isomorphic and so types are formally
indistinguishable from justifications. In light of such a correspondence, the particular
type assigned to a sentence like this is wine is identical to its justification, which is a
defeasible proof of the truth of the proposition that the object the speaker demonstrates
is wine. This identification of types with justifications not only theoretically clarifies
the internal content of terms, but it also allows us to exploit the notion of composition
in the typed lambda calculus as a method for composing internal contents without
modification.

To clarify this core concept of TCL, we sketch a recursive definition of internal
meanings ‖.‖ for a language fragment with just nouns (N) and adjectives (A) and
assuming, for illustrative purposes, a Montague-like composition rule for the two. We
assume each individual, recognizable object has a name e; and to each such name
we assign an individual type. We will take as primitive the set I of individual types. We
identify these with an individual justification rule r that can be used to recognize the
object denoted by e. To give an example of an individual justification rule, if a speaker A,
who has used the demonstrative this to refer to a particular object in her environment,
is asked to justify her use of the demonstrative (e.g., another speaker B asks, what do you
mean ‘this’?), the speaker will resort to an individual justification rule for determining
the referent of this. Linguistically, such a rule is expressed as a definite description for
the denotation—for example, to explain her use of this, speaker A might say: the stuff
in the glass that I’m holding. Besides I, we will also take as basic the type PROP, the type
of closed formulas or sentences. PROP is a set of justifications, which are, given the
Curry-Howard correspondence, defeasible proofs for the truth of formulas. Note that

705

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

PROP also contains the empty set ∅ in case a formula has no justification. We specify the
types and internal contents ‖.‖ for nouns and adjectives as shown here:

� ‖N‖ : I → PROP. That is, noun types are functions from individual
justification rules r ∈ I into a set of justifications that an individual
satisfying r is of the type ‖N‖ (or ∅, if there is no such justification).

� For adjectives A , ‖A‖ : ‖N‖ → ‖N‖ . That is, an adjective meaning takes a
noun meaning and returns another noun meaning.

To illustrate, a justification rule for wine must provide particular features such that if
something satisfying a particular individual justification type r has these features, then
we can defeasibly conclude it is wine. The justification rule for wine will appeal to
olefactory, gustatory, and visual features (clear liquid of either yellow, red, or pink color)
that are typical of wine. As an example of an adjectival meaning, ‖white‖ is a function
from a justification rule like that of the noun type ‖wine‖ to a noun type justification
rule for something being ‖white wine‖. As the internal content of a noun N is a function
from individuals to propositions, it is of the right type to be assigned as a meaning to
the λ term λxNx, the usual representation for a common noun in formal semantics. The
internal content of an adjective also has the requisite structure to reflect the standard
type of adjectives, and this enables composition using the lambda calculus. This means
we can compose internal contents using the same method with which we compose
external contents.

TCL’s characterization of internal content yields a natural link between internal
content and external, model-theoretic content. The internal semantics “tracks” the
external semantics, in that in the majority of cases or in normal circumstances, the
internal semantics determines appropriate truth conditions for sentences. The internal
content given by the types does not determine the expression’s extension in all cases, as
philosophical, externalist arguments show (Putnam 1975; Kripke 1980). But assuming
speaker competence, internal content should normally yield the correct extensions for
expressions. For instance, Nicholas’s olfactory and gustatory capabilities are reasonably
good at distinguishing different kinds of white wine. They are not infallible; and so
they cannot determine the extension of the predicate Chardonnay from the Corbières. But
they do often work correctly and would constitute his justification for his asserting that
something is a Chardonnay from the Corbières. A justification for a predicative expres-
sion should in normal circumstances identify elements in that predicate’s extension;
otherwise it would not be a justification. Similarly, an individual justification rule rt for
using a referring term t would not be a justification if rt did not pick out normally what
t refers to. Composing these justifications and similar ones for other parts of speech
together to get a justification for a whole sentence will then also normally deliver the
correct truth value in a circumstance of evaluation. Because these justifications tell us
what the truth conditions of the sentence would be in the normal case, they are in effect a
modal characterization of those truth conditions.

2.2 TCL and Meaning Shifts

Meaning shifts occur often when composition occurs. We call meaning shifting com-
positions co-compositions, following Pustejovsky (1995). There are several kinds of co-
composition. One kind is easily explained using TCL’s system of types. An ambiguous
word may be made less ambiguous when it combines with other words. Consider for

706

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

instance the word traffic. It is ambiguous at least between the senses of denoting a flow of
vehicles or information. However, when combined with a modifier like Internet or New
York City in the phrases Internet traffic and New York City traffic, this ambiguity vanishes:
The modifier selects or at least prefers one of the senses of traffic. TCL and other type
theoretic lexical theories represent the different senses of ambiguous words with the
use of disjoint types. For example, traffic would have the disjoint type INFORMATION
∨ VEHICLE. TCL models the disambiguation in the phrases above with an inference
that is logically sound: The predicate, by selecting one of the disjoint types to satisfy its
selectional restrictions, makes the other types in the disjoint union non-applicable, thus
conferring a more specialized meaning to the argument.

But the composition of a predicate and its argument can exhibit other sorts of mean-
ing shifts as well, which pose challenges for type theories other than TCL. Consider the
following adjective–noun compositions:

(1) a. heavy appliance
b. heavy rain
c. heavy sea
d. heavy bleeding
e. heavy smoker

In these examples the head noun affects the meaning of the modifier. If these data are
well known, formal analyses for them are not. We could assume that adjectives are
wildly ambiguous, roughly one sense for each noun with which they can combine. And
we could model their internal content in terms of the disjoint union of their possible pre-
cisifications (the unambiguous senses). But that would miss or obscure certain logical
relations. For instance, a heavy physical object does have something in common with
heavy rain, and even with heavy smoker and heavy bleeding; in each case some dimension
of the denotation of the head noun is modified towards an extreme, saturated end of
the scale (Mel’cuk 2006). A disjoint union type is right for homonymously ambiguous
expressions (such as bank) but not for logically polysemous ones—expressions whose
senses have some logical or metaphysical connection.

To analyze logical polysemy, TCL appeals to functors that shift the meaning of
the predicational relation itself. Although TCL motivates the functor view based on
an analysis of coercion, it also uses it for co-composition. In TCL an expression has
a type presupposition which must be satisfied in the predicational environment; a
failure to satisfy such a type either leads to semantic anomaly or coercion effects.
Type presuppositions are very general types like EVENTUALITY, PHYSICAL-OBJECT, or
INFORMATIONAL-OBJECT. But an expression also has a more specific, “fine-grained”
type that encapsulates the internal content specific to the term, the sort of content we
discussed before. It is this fine-grained content that TCL exploits in co-composition.

TCL’s approach to adjective–noun co-composition is quite different from a standard
Montagovian approach. In standard semantic treatments, an adjectival meaning is a
functor taking a noun meaning as an argument and returning a noun phrase meaning;
composition is a matter of applying the adjective meaning as a higher-order property
to the noun meaning. In TCL the noun and adjective meanings affect each other, and
the output of an adjective–noun composition is the conjunction of a modified adjectival
meaning and a modified noun meaning, which are both first order properties and apply
to individuals, as in Schema (2). It introduces functors that potentially modify both
the adjective and the noun’s internal content in co-composition and then conjoins the
modified contents. In the adjective–noun composition Schema (2), A is the adjective, N the

707

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

noun, OA the functor on the noun given by the adjective, and MN the functor on the
adjective induced by the noun:

(2) λx (OA(N(x)) ∧MN(A(x)))

For subsective adjectives,1 which include the vast majority of adjectives in most
languages, OA selects a subtype or constituent type of N, if they shift the meaning of
N at all. Thus, the individuals satisfying OA(N(x)) will necessarily be a subset of the
denotation of N at any point of evaluation. TCL thus predicts an influence of the
adjective on the noun’s denotation when we have a subsective modifier—in particular,
an ambiguous noun may be disambiguated by the modifier’s meaning. Those few
adjectives that are not subsective, like former in former prisoner, support inferences that
subsective adjectives do under the scope of some sort of modal or temporal operator;
for example, former prisoners were once prisoners, possible difficulties are difficulties in
some epistemic alternative, and fake guns and stone lions appear to be or look like guns
and lions.

TCL also predicts an often non-trivial shift in the meaning of a modifier as it com-
bines with various nouns or vice versa. This coincides with our findings in distributional
semantics for adjective–noun compositions in Section 4. For instance, non-intersective
adjectives are predicted to undergo a modification that relativizes their denotation.
Consider a non-intersective adjective like small in the sentence that’s a small elephant.
The functor Melephant should shift to select those things in the denotation of elephant that
are small on a scale suitable for elephants. Adjective–noun compositions analyzed with
functors thus immediately yield interesting inferences; that’s a small elephant entails that
that is an elephant and that it was small for an elephant.

According to TCL, adjective–noun compositions should thus be decomposable, in
the sense that it should entail that there is an object of type N as modified by the
adjective and that it has some properties given by the modified sense of the adjective.
This formalizes observations made by other researchers as well (Kamp and Partee 1995;
Partee 2010).

2.3 Types as Algebraic Objects

TCL tells us about the general form of composition, and the TCL equation in Exam-
ple (2) imposes useful constraints on the functors essential to this process. But to build
appropriate functors for individual words like heavy in the context of storm, for instance,
TCL does not provide any method. DS offers us the promise of giving us the functors
we want in a systematic and automatic way.

We will model each word’s type or TCL internal content with a suitable algebraic
object from DS. In most versions of DS, each basic word meaning is a vector in
some space V whose dimensions are contextual features or a more abstract set of
latent features. This is not quite the sort of defeasible justifications discussed in
Section 2.1, but it is a place to start and it contains information pertinent to justification.
Thus, individual word types will be modeled as vectors in a finite dimensional
space V, whose dimensions reflect aspects of the context of use. The DS counterpart
of a TCL functor is a transformation of v ∈ V into a vector v′ ∈ V, where v’s values

1 A subsective adjective, A, in an adjective–noun combination AN is one that validates the inference from
AN(x) to N(x). An intersective adjective, A, validates the inference from AN(x) to A(x) ∧ N(x). For more
information, see Partee (1995).

708

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

on certain dimensions differ from those of v because the context has been filled in
slightly. We want our functors to output a new type; so in the algebraic setting, a
type is any vector in V. More general types—appropriate for type presuppositions
and selectional restrictions—can be represented as functions of lower level types.
Such an identification allows us to construct selectional restrictions for predicates
automatically, which extends TCL’s coverage dramatically.

In identifying types with vectors, we must take care that the type is captured in the
right way so as to link with the “logical” type required for composition by FS. For com-
posing adjectives and nouns, TCL’s functor approach and the co-composition schema
in Example (2) tells us that an adjective’s contextually given type must depend on the
fine-grained noun type it combines with and return a common noun type ‖N‖, whereas
the noun type must be a function from the fine-grained adjective types it combines
with to common noun types — i.e., (‖N‖ → ‖N‖) → ‖N‖.2 As we saw in Section 2.1,
in light of the Curry-Howard correspondence, it suffices to assign the right types to
expressions, to have a compositional story with internal content. Once you specify the
type of an expression, you have specified the form of its justification, its internal content;
and that is all that is required to get composition to work. But once we have identified
types with vectors in order to supply them with rich information, we need to revisit
the issue, because vectors by themselves do not have the structure of TCL types or
justifications. To exploit co-composition, the DS algebraic meaning for adjectives must
reflect the contextual modification of that word’s unmodified distribution due to a noun
it combines with, and it must do something similar for nouns. In addition, a DS method
must provide an algebraic meaning for nouns and adjectives that eventually provides a
justification of the right type (e.g., a justification of type ‖N‖).

We provide vector meanings for nouns and adjectives using DS methods by pro-
ceeding in several steps. First, we will provide a vector for the individual word, be it
adjective or noun, within a space that takes the syntactic/semantic dependencies of that
word into account. These include direct syntactic dependencies but more long distance
semantic dependencies as well. In a second step, we exploit a space of latent dimensions
to calculate compositional effects on these vectors. This second step adapts these vectors
to the local predicational context. The noun vector is weighted by the dimensions that
are most prominent in the adjective’s latent representation, and the adjective’s vector
is similarly adjusted to take into account the meaning of the noun with which it is
paired. Building the modified meanings in this way will enable us to output a meaning
of the right type for the co-composition. The process, which we detail in Section 3.1,
outputs two predicates of type ‖N‖ that we can conjoin together to get the meaning of
the adjective–noun combination.

2.4 Discussion

Some might wonder why we consider it necessary to mix statistical and logical infor-
mation in one system. Would it not be possible to just use the statistical information
provided by vectors, without recourse to types? We think a system like TCL has some
attractive FS features—like the use of variables or discourse referents, scope bearing
operators, and so forth—that will be difficult to reproduce with algebraic methods
on their own (Garrette, Erk, and Mooney 2011). Further, convinced by the arguments

2 In order to express this co-dependence formally, we must assign a higher functional type to nouns than
the one given to nouns in Montague grammar. See Asher (2011) for details.

709

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

in Kripke (1980) and Putnam (1975), we believe that algebraic methods, and indeed
any purely internal semantics, cannot capture the external aspects of meaning. Both
of these are crucial to determining truth conditions, a long-standing goal of theories
of formal semantics (cf., e.g., Frege 1985; Montague 1974; Davidson 1967b; and Lewis
1970). We believe that a proper theory of meaning needs an external semantics as well
as an internal one. The external part of the semantics is tied to a theory of truth, and
the internal one to the content that expressions come endowed with by virtue of how
they are used and how that use is justified. And as internal content characterizes truth
conditions modally, our DS construction of TCL functors should ultimately affect our
characterization of truth conditions. But to do that, we have to bring the information
encoded in the modified vectors back into the symbolic system, via expressions that
DS associates with a target expression. Ideally, the characterization of the output of the
functors applied to an adjective or noun should be something like a defeasible justifica-
tion for using the particular adjective or noun in that particular predicational context.
Although statistical distributions that DS methods offer do not offer this directly, we
investigate in the following sections how cosine similarity might capture information
relevant to the functor definition and to its output, although other approaches might
offer improved results (Roller, Erk, and Boleda 2014).

The identification of vectors and types changes TCL and its approach to basic
linguistic phenomena. Whereas in TCL, semantic well-formedness was originally a
binary decision, semantic well-formedness now becomes a matter of degree. We could
provide a score to each predication depending on how close the fine-grained types are to
matching type presuppositions. The closer the distances, the better or more prototypical
the predication. Thus TCL’s binary view of semantic well-formedness would morph
into a more graduated scale, which might more accurately reflect the intuitions of
ordinary speakers (Magidor 2013). A further change to TCL is the nature of the space
of types. Although type spaces in most type theories are discrete, the space of types
given our new assumptions is a compact metric space. This allows us to apply more
constraints to meaning shift that can give the account some more meat. For instance,
the TCL functors are constrained by the types they modify. One cannot just shift a type
anywhere in type space. If types are points in a metric space, we can make this restriction
precise by, for example, using a Lipschitz condition.3 Such a constraint requires that
functors should treat similar types similarly.

3. Distributional Models for Constructing Internal Contents and Their Composition

To incorporate information from distributional semantics into TCL’s functor approach,
our distributional models need to provide modified vectors, in our case study, both for
adjectives (as modified by nouns) and nouns (as modified by adjectives). This section
provides an overview of two distributional models that are able to provide us with
such vectors. Section 4 contains the results of our case study, where we apply the
models to the case of adjective–noun composition. In Section 5, we then sketch how
the information that comes from distributional models might be incorporated into a
TCL logical form.

We consider two different methods for computing a contextual weighting of ad-
jective and noun vectors. The first method, latent vector weighting, is based on a matrix

3 A function f obeys the Lipschitz condition iff ∀x, y ∈ R
n, ‖ f (x) − f (y)‖ ≤ C‖x − y‖, where ‖.‖ is a

suitable norm for the vector space and C is some constant.

710

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

factorization technique in which a latent space is constructed that is shared between
different modes. The second technique, based on tensor factorization, makes use of a
latent “core tensor” that is able to model multi-way interactions between the latent
factors of different modes. Neither method is associative or commutative, and so are
a priori plausible candidates for general composition methods in DS.

Note that these are not the only models one might use in order to compute the
modified vectors we are after; we chose to illustrate our approach with these two models
because they provide a straightforward way to compute the contextified vectors that
we need for integration with TCL’s functor approach. However, some models are not
suitable. Additive or multiplicative methods for combining meanings (Mitchell and
Lapata 2010) do not yield unique decomposition. For instance, an additive method
produces a vector that could be the result of any number of sums of vectors.

3.1 Latent Vector Weighting

The main idea of latent vector weighting (LVW) is that the adjective (noun) that
appears with a particular noun (adjective) defines a distribution over latent semantic
factors, which is subsequently used to adapt the general vector representation of the
noun (adjective), shifting the vector towards the correct meaning. As a first step, a
factorization model is constructed in which words, together with their window-based
context words and their dependency relations, are linked to latent dimensions. The
factorization model then allows us to determine which dimensions are important
for a particular expression, and adapt the dependency-based feature vector of the
word accordingly. The model uses non-negative matrix factorization (Lee and Seung
2000) in order to find latent dimensions. We use non-negative matrix factorization
(NMF), because of the property that its dimensions each give a more interpretable
component of meaning (Lee and Seung 1999), and because it has an efficient learning
algorithm (Lee and Seung 2000). A detailed description of the method can be found
in Van de Cruys, Poibeau, and Korhonen (2011).

Using the results of the factorization model, we can adapt a word’s feature vector
according to the compositional expression it appears in.4 Intuitively, a modifier that
takes part in a compositional expression with the target word (e.g., an adjective modifier
that appears with a target noun) pinpoints the important semantic dimensions of the
target word, creating a probability distribution over latent factors p(z|di), where di is
the dependency feature that represents the target word’s modifier in the compositional
expression.

The resulting probability distribution over latent factors can be interpreted as a
semantic fingerprint according to which the target word needs to be interpreted. By
combining this fingerprint with the appropriate factor matrix, we can now determine a
new probability distribution over dependency features given the context—p(d|C).

(3) p(d|C) = p(z|C)p(d|z)

The last step then is to weight the original probability vector of the word ac-
cording to the probability vector of the dependency features given the word’s

4 Note that the factorization that comes out of the NMF model can be interpreted probabilistically (Gaussier
and Goutte 2005; Ding, Li, and Peng 2008). More details are provided in Van de Cruys, Poibeau, and
Korhonen (2011).

711

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

context, by taking the pointwise multiplication of probability vectors p(d|wi) and
p(d|C).

(4) p(d|wi, C) ∼ p(d|wi) · p(d|C)

Note that this final step is a crucial one in our approach. We do not just build a
model based on latent factors, but we use the latent factors to determine which of
the features in the original word vector are the salient ones given a particular con-
text. This last step provides the algebraic counterpart of TCL’s functors. In the LVW
model, what we do is use two vector spaces, the original vector space V where each
word is represented in a space of syntactic/semantic contexts and a vector space V′
with reduced dimensions, where lexical meanings have a more topical representation.
Computing the conditional probability of each dimension z of V′ relative to the vector
for the adjective then provides a way of calculating the probability of each element
of V given the presence of the adjective. This “slightly more determined context”
vector v∗ now furnishes the algebraic counterpart of our functor: The functor can be
represented as λv v∗.v, where v∗ is the contextually weighted vector p(d|C), v is the
original vector whose values are p(d|wi), and v∗.v signifies the point-wise product of
the two vectors.

The following example, which uses actual corpus data, illustrates how the approach
works. Say we want to compute the distributionally similar words to the noun de-
vice in the context of example expressions explosive device and electrical device. First,
we determine our semantic fingerprints—p(z|explosive) and p(z|electrical), which are
provided by our factorization model. Using these probability distributions over latent
factors, we can now determine the probability of each dependency feature given the
different contexts—p(d|explosive) and p(d|electrical)—following Equation (3). Our last
step is then to weight the original probability vector of the target word (the aggre-
gate of dependency-based context features over all contexts of the target word) ac-
cording to the new distribution given the argument that the target word appears with,
using Equation (4). We can now compute the top similar words for the two adapted
vectors of device given the different arguments, which, for the first expression, yields
{device, ammunition, firearm, weapon, missile} and for the second expression yields {device,
equipment, sensor, system, technology}.5

3.2 Tensor Factorization

Our second approach—based on tensor factorization (TENSOR)—allows for an even
richer and more flexible modeling of the interaction between adjectives and nouns, in
order to provide an adequate representation of each when they appear in each other’s
context. The key idea is to factorize a three-way tensor that contains the multi-way
co-occurrences of nouns, adjectives, and other dependency relations (in a direct
dependency relationship to the noun) that appear together at the same time. A number
of well-known tensor factorization algorithms exist; we opt for an algorithm called
Tucker factorization, which allows for a richer modeling of multi-way interactions
using a core tensor. In Tucker factorization, a tensor is decomposed into a core tensor,

5 We constructed a separate model for adjectives because the dependency relations for adjectives are rather
different. This allows us to compute the most similar adjectives to a particular adjective used in context
(weighting the original adjective vector consisting of dependency features). Formally, we take these
similar adjectives to be simple predicates and so effectively of type ‖N‖, as required from Section 2.3.

712

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

multiplied by a matrix along each mode. For a three-mode tensor X ∈ R
I×J×L, the

model is defined as

(5)

(6)

X = G ×1 A ×2 B ×3 C

=
P∑

p=1

Q∑

q=1

R∑

r=1

gpqrap ◦ bq ◦ cr

where ◦ represents the outer product of vectors. By setting P, Q, R I, J, L, the factoriza-
tion represents a compressed, latent version of the original tensor X ; matrices A ∈ R

I×P,
B ∈ R

J×Q, and C ∈ R
L×R represent the latent factors for each mode, and G ∈ R

P×Q×R

indicates the level of interaction between the different latent factors.
Again, we carry out the factorization with non-negative constraints, for the same

reasons that were mentioned with our first approach, and we find the best possible fit
to the original tensor X using Kullback-Leibler divergence, a standard information-
theoretic measure. We make use of an efficient algorithm for non-negative Tucker
decomposition, exploiting the fact that our input tensor is ultra-sparse. More details
on the algorithm may be found in Chi and Zhu (2013).

To ensure that the algorithm finds a good global optimum, we initialize the three
matrices using data that come from the non-negative matrix factorization of our first
approach. Additionally, to strike a balance between the rich latent semantics that comes
from the non-negative matrix factorization and the latent multi-way interaction that is
provided by our tensor factorization algorithm, we do not make the tensor factorization
algorithm converge, but we stop the iterative updates early based on the reconstruction
of adjective–noun pairs from a development set (cfr. infra).

We can now compute a representation for a particular adjective–noun composition.
In order to do so, we first extract the vectors for the noun (ai) and adjective (bj) from the
corresponding matrices A and B. We can now multiply those vectors into the core tensor,
in order to obtain a vector h representing the importance of latent dimensions given
the composition of noun i and adjective j, that is, h = G ×1 ai ×2 bj. By multiplying the
vector representing the latent dimension with the matrix for the mode with dependency
relations (C), we are able to compute a vector d representing the importance of each
dependency feature given the adjective–noun composition, namely, d = hCT. The last
step is then again to weight the original noun vector according to the importance of each
dependency feature given the adjective–noun composition, by taking the pointwise
multiplication of vector d and the original noun vector v (i.e., v̂d = dd.vd). Note that
we could just keep the representation of our adjective–noun composition in latent
space. In practice, the original dependency-based representation provides a much richer
semantics, which is why we have chosen to perform an extra step weighting the original
vector, as we did with our first approach, latent vector weighting.

As an example, when the computations outlined here are applied to the expressions
muddy bank and financial bank, the top similar words are {hillside, slope, ledge, cliff, ridge}
and {bank, broker, insurer, firm, banker}, respectively.

3.3 Implementational Details

This section contains a number of implementational details for both our approaches.
We used the UKWaC corpus (Baroni et al. 2009), an Internet corpus of about 1.5 billion

713

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

words, to construct the algebraic structures for both approaches. We tagged the
corpus with part-of-speech tags, lemmatized it with the Stanford Part-Of-Speech
Tagger (Toutanova and Manning 2000; Toutanova et al. 2003), and parsed it using
MaltParser (Nivre, Hall, and Nilsson 2006).

For the LVW approach, the matrices needed for our NMF factorization were extracted
from the corpus. We built the model, using 5K nouns (or 2K adjectives), 80K dependency
relations, and 2K context words6 (excluding stop words) with highest frequency in the
training set. All matrices were weighted using pointwise mutual information (Church
and Hanks 1990). The NMF model was carried out using K = 600 (the number of factor-
ized dimensions in the model), and applying 50 iterations.

For our second approach, the tensor factorization approach, we extracted our input
tensor X of 5K nouns by 2K adjectives by 80K dependency relations from the corpus. The
tensor X was weighted using a three-way extension of pointwise mutual information
(Van de Cruys 2011). We set K = 300 as our number of latent factors. The value was
chosen as a trade-off between a model that is both rich enough, and does not require an
excessive amount of memory (for the modeling of the core tensor). The three matrices of
our factorization model were initialized using the latent matrices for nouns, adjectives,
and dependency relations from our LVW approach, using 300 dimensions. For the
adjective matrix, the appropriate adjectives were extracted from the dependency matrix.

In order not to overfit our tensor factorization (i.e., to strike a balance between the
semantics coming from the NMF factorization and the interaction information provided
by our three-way tensor), we stopped the factorization algorithm early. We created a
development set of 200 adjective–noun combinations, and we monitored the cosine sim-
ilarity between the adjective–noun vector constructed by our model, and the adjective–
noun vector that was attested in the corpus. We stopped iterating the factorization
when the mean reciprocal rank of the attested combination (computed over a full set
of about 100K adjective–noun combinations) was the highest.

All similarity computations for both approaches were performed using cosine as a
similarity measure.

4. A Case Study on Adjective–Noun Compositions

4.1 Methodology

In this section, we provide results for a pilot study as to whether the two distributional
approaches described earlier reflect a semantic shift in co-composition for adjectives
and nouns and can offer something like a justification, in terms of related words, of
an expression’s use in context. Our evaluation used a list of English adjective–noun
combinations drawn from Wiktionary, extracted by the method discussed in Bride,
Van de Cruys, and Asher (2015). We added to this list adjective–noun combinations that
we thought would exhibit more interesting co-compositional interaction, to achieve a
list of 246 adjective–noun pairs in total (see Appendix A).

We created vectors for each of the adjective–noun combinations—using both
the LVW and TENSOR approach—and computed the top 10 most similar nouns and
top 10 most similar adjectives for each of the vectors using cosine similarity. For com-
parison, we also computed the results for the original, non-composed noun vector

6 We used a fairly large, paragraph-like window of four sentences.

714

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

(UNMODIFIED), as well as for composed adjective–noun vectors created using the lexical
function (LEXFUNC) model of Baroni and Zamparelli (2010).7

Two of the authors, both experts in formal semantics, evaluated the resulting sets,
guided by the following criteria:

1. Meaning shift — Do the distributional approaches predict a meaning shift
in the composition of an adjective with a noun?

2. Subsectivity and intersectivity — Given an adjective A and noun N and
their composition AN, do the methods predict:

(a) Subsectivity — Does the composed adjective–noun meaning
predict the individual noun meaning, i.e., AN(x) → N(x)?
For example, former is not subsective, but small is.

(b) Intersectivity — Does the composed adjective–noun meaning
predict the individual adjective meaning, i.e., AN(x) → A(x)?
For example, small is not intersective, but round is.

We evaluated subsectivity and intersectivity as follows: if the original
noun (adjective) was among the ten most similar nouns (adjectives) to the
modified expression, we concluded that subsectivity (intersectivity) holds.
Though somewhat limited, it is a straightforward way to examine the
tendencies with regard to this criterion.

3. Entailment — Evaluators examined whether each of the 10 most similar
words Y to the modified adjective or noun was such that AN(x) defeasibly
entails Y(x). Our guideline was that X was a defeasible entailment of Y iff
an X was normally or usually a Y or the presence of X normally or usually
implied the presence of Y. For instance, is heavy bleeding (normally)
uncontrolled?

4. Semantic coherence — Evaluators examined whether each of the 10 most
similar words Y to the modified adjective or noun semantically related to
the expression in ways that could help constitute a justification of its use.
Semantic relations included: part–whole (e.g., is wind a part of a heavy
storm?), subtype (e.g., is hurricane a subtype of heavy storm?), typical
localization (e.g., does heavy traffic typically occur at peak periods?), causal
(e.g., can heavy bleeding be eventually fatal or cause a fatal condition?),
semantic alternative (e.g., is diarrhea a semantic alternative to heavy
bleeding?), and antonym relations (e.g., is light an antonym of heavy in heavy
traffic?) (Girju et al. 2009).

The first question—meaning shift—was evaluated quantitatively (taking cosine as a
proxy for shift) and qualitatively (by manually inspecting the overlap of the lists of
closest words for the unmodified and modified word meanings), and the others were
treated as binary classification problems, evaluated in terms of accuracy. We investi-
gated these phenomena for both nouns (weighting the noun vector with regard to the
adjective context) and adjectives (weighting the adjective vector with regard to the noun

7 We constructed the models over the same corpus data, making use of the DISSECT toolkit (Dinu, Pham,
and Baroni 2013).

715

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

context).8 The annotators evaluated criteria 3 and 4 both with regard to the most similar
and the top 10 most similar words. Twenty percent of the data were doubly annotated
yielding Cohen κ scores of between 0.67 and 0.74 for the various criteria.9 The rest
of it was singly annotated, with the second annotator then reviewing and discussing
the decisions of the first when there was disagreement; the annotators then produced
the final data sets by consensus. Using their judgments, we then compiled accuracy
figures as to whether, according to a given method, the most similar word to the target
expression was a defeasible entailment or semantically related and how many of the 10
most similar words stood in one of these relations.

4.2 Results

Meaning shifts were observed for almost all adjective–noun combinations. As an illus-
tration, consider the shift of the adjective heavy when it modifies the noun traffic (com-
puted using the LVW method). The first listing gives the 10 most similar adjectives to the
unmodified vector for heavy. The second listing shows the 10 most similar adjectives to
the vector for heavy in the context of the noun traffic.

1. heavyA: heavyA (1.000), torrentialA (.149), lightA (.140), thickA (.127), massiveA
(.118), excessiveA (.115), softA (.107), largeA (.107), hugeA (.104), bigA (.103)

2. heavyA, trafficN: heavyA (.293), motorizedA (.231), vehicularA (.229), peakA
(.181), one-wayA (.181), horse-drawnA (.175), fast-movingA (.164), articulatedA
(.158), calmingA (.156), horrendousA (.146)

There is an evident shift in the composed meaning of heavy relative to its original mean-
ing; there is no overlap in the lists 1 and 2 except for heavy. Using LVW, simcos(�vorig,�vmod)
for all the adjectives varied between .25 and .77, with the vast majority of adjectives
exhibiting simcos(�vorig,�vmod) lower than .50. The mean overlap between the shifted set of
similar words and the original set of 20 most similar words is 6, whereas for nouns
it is 10. simcos(�vorig,�vmod) for all the nouns varied between .3 and .8, and the mean
was .5. Using tensor factorization, the quantitative shift was even larger; for nouns,
simcos(�vorig,�vmod) ≤ .3 on average and was never above .5. The raw similarity scores on
the LEXFUNC approach were significantly higher on average than those for the other
approaches. These quantitative measures show that a shift in co-composition was the
norm for adjectives in our test set, both for the LVW and the TENSOR method. Nouns
shifted less, something that we expected from TCL and the principle of subsectivity.

The results for subsectivity and intersectivity are presented in Table 1. As the
results indicate, subsectivity clearly holds for LVW and TENSOR, whereas this is less
the case for the LEXFUNC model. The results for intersectivity are mixed: Although the
LVW method clearly favors intersectivity, the results of the TENSOR method are quite a
bit lower.

Accuracy results for entailment are reported in Table 2. Using LVW for nouns,
59% yielded entailments for the most similar noun, and 32% for the top ten most similar
nouns. Adjectives score quite a bit lower: 32% were judged to be good defeasible entail-
ments for the most similar adjective, and 25% for the top 10 most similar adjectives.

8 Baroni and Zamparelli’s LEXFUNC method does not provide results for adjectives, hence they are not
included. Our full results are available upon request.

9 For semantic coherence, κ was calculated on the union of semantic relations.

716

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

Table 1
Accuracy results for subsectivity and intersectivity.

method subsectivity intersectivity

UNMODIFIED 1.00 .95
LEXFUNC .58 –
LVW .99 1.00
TENSOR .97 .47

Table 2
Accuracy results for entailment. ent1 looks at the top most similar word, and ent10 looks at the
top 10 most similar words.

method nouns adjectives
ent1 ent10 ent1 ent10

UNMODIFIED .22 .13 .18 .12
LEXFUNC .42 .23 – –
LVW .59 .32 .32 .25
TENSOR .42 .30 .16 .13

The results for LEXFUNC and TENSOR are even lower. We might conclude that cosine
similarity between vectors is, as we suspected, not a particularly good way to capture
entailments, and it might be better to use other methods (Roller, Erk, and Boleda 2014;
Kruszewski, Paperno, and Baroni 2015). Although the presence of similar antonyms
contributed to the putative entailments that were judged bad, there were also many
cases where the composition method yielded related words but not entailments. We
evaluated the methods with respect to these semantically related words in Table 3.

The accuracy results for semantic coherence are reported in Table 3. For nouns, our
TENSOR method did significantly better than either the LEXFUNC or the LVW methods.
52% of the most similar nouns were semantically related in some relevant way other
than entailment; and among the top 10 closest meanings to the original noun, 43%
bore one of our semantic relations to the targeted, shifted noun meaning. The noun
meaning closest to the target noun meaning modified by co-composition stood either
in an entailment relation or other semantic relation 94% of the time; and 73% of the top
10 closest nouns were either entailments or stood in one of the other semantic relations
we tested for, an improvement of over 20% compared with the second best method,

Table 3
Accuracy results for semantic relations (sr) and entailment. Results are presented for both the
top most similar word, and the top 10 most similar words. ent+sr combines both entailments
and semantically related words.

method nouns adjectives
sr1 sr10 ent+sr1 ent+sr10 sr1 sr10 ent+sr1 ent+sr10

UNMODIFIED .37 .20 .59 .33 .14 .09 .32 .21
LEXFUNC .19 .15 .61 .38 – – – –
LVW .27 .20 .86 .52 .35 .24 .67 .49
TENSOR .52 .43 .94 .73 .38 .30 .53 .43

717

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

LVW. The tensor factorization method reproduced the finding in the literature that co-
hyponyms are often closely related to the target vector (Weeds, Weir, and McCarthy
2004). On adjectives, the TENSOR method performed significantly better on other se-
mantic relations than with entailments, but still well below its performance with the
shifted noun meanings.

5. Integrating Semantic Information from DS Methods into TCL Functors

Following our plan laid out in Section 2.3 for integrating DS content into TCL, we
now provide a preliminary and admittedly somewhat speculative account of how to
translate our results of Section 4 into a “spell-out” of the functors OA and MN. These
operators approximate symbolically the shift in meaning under co-composition.

The spell-out uses the list of similar words for the modified adjective and noun.
Because we are translating into a purely symbolic environment, we need a separate
process that clusters the predicates into different coherent internal meanings. The op-
erator Normally is a modal operator that tells us what is normally the case in context.
Let N1, . . . , Nk and A1, . . . , Al be the closest nouns and adjectives related to the modified
noun/adjective. The relations SRi stand for (a subset of) the semantic relations discussed
in criterion 4 of Section 4.1.

(7) OA(N)(x) := N(x) ∧ normally(N1(x) ∧ ... ∧ Nj(x) ∧ SR1(Nj+1, N)(x)) ∧ ... ∧
SRm(Nk, N)(x))

For adjectives, we have:

(8) TN(A)(x) := normally(A1(x) ∧ ... ∧ Aj(x) ∧ SR1(Aj+1, A)(x) ∧ ... ∧
SRn(Al, A)(x))

Consider the example heavy bleeding. Looking at the the top five closest noun
meanings for the adjective–noun composition using the TENSOR method, we obtain the
following functor modifying the noun.

(9) OHEAVY(bleeding)(x) := bleeding(x) ∧ normally(complication(x) ∧
irritation(x) ∧ alternative(diarrhea, bleeding)(x),∧
result(bleeding, discomfort)(x))

To automatically specify our noun functors we would need good detectors for
semantic relations between nouns or between NPs and between adjectives. This, as far
as we know, is not yet feasible, but there are signs that we are not so far away.10

The functor for the adjectival meaning is based on the closest adjectives to heavy in
its predicational context heavy bleeding, calculated with the TENSOR method:

(10) OBLEEDING(heavy)(x) := normally(sudden(x) ∧ prolonged(x) ∧
uncontrolled(x) ∧ avoidable(x)) ∧ possible-result(heavy, fatal)(x)

The TCL meaning for heavy bleeding is derived from conjoining the output of the
two functors in Equations (9) and (10) and then lambda-abstracting over x. This yields a
term that accords with the co-composition schema in Equation (2). We have thus taken
some first steps to provide appropriate justification rules and internal contents for terms
and a much more robust approach to lexical semantics combining both TCL and DS. We
have opted for the discretized output given here to ensure that our composition has a

10 For causal relations, see the work of Do, Chan, and Roth (2011).

718

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

model-theoretic interpretation as well as a type-theoretic one, and yields semantically
appropriate inferences. An alternative might have been to take the similarity values
assigned to the words in our list to correspond to probabilities that such predicates hold
in this context. But we see little theoretical or empirical grounds for taking similarity
values to be probability values that the predicates hold; and doing so makes no semantic
sense in many cases using our method.11

6. Related Work

In recent years, a number of methods have been developed that try to capture com-
positional phenomena within a distributional framework. One of the first approaches
to tackle compositional phenomena in a systematic way is Mitchell and Lapata (2010).
They explore a number of different models for vector composition, of which vector addi-
tion (the sum of each feature) and vector multiplication (the element-wise multiplication
of each feature) are the most important. They evaluate their models on a noun–verb
phrase similarity task, and find that the multiplicative model yields the best results,
along with a weighted combination of the additive and multiplicative model. We have
argued here that simple additive and multiplicative models will not do the job we want
because they fail on decompositionality.

Baroni and Zamparelli (2010) present the lexical function model (LEXFUNC) for the
composition of adjectives and nouns. In their model, an adjective is a linear function of
one vector (the noun vector) to another vector (the vector for the adjective–noun combi-
nation). The linear transformation for a particular adjective is represented by a matrix,
and is learned automatically from a corpus, using partial least-squares regression. We
have evaluated their method to the extent we were able on our test set, and saw that it
yielded results that did not suit our purposes as well as other methods.

Dinu and Lapata (2010) advocate a method that resembles LVW, in that it uses
a distribution over latent dimensions in order to measure semantic shifts in context.
However, whereas their approach computes the contextualized meaning directly within
the latent space, the LVW approach we adopt in this article exploits the latent space to
determine the features that are important for a particular context, and adapt the original
(out-of-context) dependency-based feature vector of the target word accordingly. This
allows for a more precise and more distinct computation of word meaning in context.
Secondly, Dinu and Lapata use window-based context features to build their latent
model, whereas our approach combines both window-based and dependency-based
features.

There exists a large body of work on lexical substitution that aims to compute the
meaning of words in context. Erk and Padó (2008, 2009) make use of selectional prefer-
ences to express the meaning of a word in context; to compute the meaning of a word in
the presence of an argument, they multiply the word’s vector with a vector that captures
the inverse selectional preferences of the argument. Thater, Fürstenau, and Pinkal (2010)
extend the approach based on selectional preferences by incorporating second-order co-
occurrences in their model; their model allows first-order co-occurrences to act as a filter
upon the second-order vector space, which computes meaning in context. And Erk and
Padó (2010) propose an exemplar-based approach, in which the meaning of a word in
context is represented by the activated exemplars that are most similar to it.

11 For a different take on this issue, see, e.g., Beltagy, Erk, and Mooney (2014).

719

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

Coecke, Sadrzadeh, and Clark (2011) introduce an abstract categorial framework
that unifies both certain theories of syntactic structure and certain general approaches
to DS. A number of instantiations of the framework are tested experimentally in
Grefenstette and Sadrzadeh (2011a, 2011b). The key idea is that relational words (e.g.,
adjectives or verbs) have a rich (multi-dimensional) structure that acts as a filter on
their arguments. Like Mitchell and Lapata (2010) and Baroni and Zamparelli (2010),
they explore the idea that lexical semantics and composition can be done in a fully
algebraic setting, which is quite different from our hybrid view. Coecke, Sadrzadeh,
and Clark and TCL both use a categorial semantics. The categorial structure of the
former is a compact closed category, which means decomposition does not hold. From
their categorial model of an adjective (A) noun (N) combination, A ⊗ N, there is no
projection to A and N. TCL internal semantics exploits a different categorial structure,
that of a topos, in which projection is valid but the categorial structure of an adjective–
noun combination is more complex than a simple (tensor) product of the adjective and
noun meaning due to the presence of the functors introduced in Equation (2).

Lewis and Steedman (2013) also seek to combine DS methods within a formal
framework. And they, like we, are interested in inference as a testing ground for
composition methods. The principal difference between our approach and theirs is that
we are interested in testing the predictions of DS at a local predicational level, and we
are interested in importing the information from DS into the functors that guide co-
composition in TCL. Lewis and Steedman do not translate the effects of DS composition
into logical form except to single out most probable senses for arguments and predicates
over a limited set of possible senses. They concentrate on pure ambiguities; for example,
they offer a representation of two ambiguous words file (remove an outer coating vs.
depose) and suit (clothing vs. legal document) and show that in file a suit, the ambiguity
disappears. It is unclear to us how they actually exploit this disambiguation that they
informally describe in inference. Our approach performs disambiguations of homony-
mous ambiguities, but we argued that this is only a special case of co-composition.

McNally and Boleda (2016) offer empirical and conceptual arguments in favor of
the TCL dual approach to meaning and, like us, see DS as an ally in specifying the
internal content aspect of composition. However, we offer a much more detailed and
specific investigation of the interactions between TCL and particular methods of DS
composition. More crucially, we do not see how to semantically interpret vectorial
predicates that McNally and Boleda introduce as components of an FS, intensional
interpretation. We think that such an interpretation is important to exploit the strengths
of FS. It is for this reason that we have investigated how we can go back to TCL
functors from our DS composition methods and have pursued a DS approach that is
largely isomorphic to the TCL one. McNally and Boleda, however, cite a very important
open area of research: Given that the internal content shifts in composition, how is that
reflected at the referential or intensional level? To some extent, we answer this in our
translation of our DS composition back into TCL functors. However, our method needs
further work to reach its full potential.

Boleda et al. (2013) also compared several methods of adjective–noun composition,
and we have used their method to determine which iteration of the TENSOR method
should produce the best results without being overfitted to the corpus. However, we
have compared various composition methods with respect to the predictions on several
semantic dimensions; they compare methods with respect to variance from predicted
distributions. Thus, our evaluation is one that is external to DS methods; theirs is not.

Other interesting approaches to integrating FS and DS include Melamud et al.
(2013) and Beltagy, Erk, and Mooney (2014). Like them, we are interested in rules that

720

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

relate to lexical inference. However, we integrate these directly into the compositional
process using the TCL functor approach.

7. Conclusions

Our article has provided a case study of one way to integrate formal and distributional
methods in lexical semantics. We have examined how one formal theory, TCL, corre-
sponds in its treatments of adjective–noun composition to some distributional models
of composition that can automatically provide information needed to construct the
functors within the TCL construction process. We tested a number of distributional
models with regard to the entailments and other semantic relations they predict for
adjective–noun compositions; in general, the TENSOR approach was superior to the
other methods tested, at least for nouns. We also have at least some indirect evidence
that a localist approach like ours, where we use DS to calculate the modifications of each
word meaning in context in TCL fashion, is preferable to a model in which DS methods
are used to calculate the meaning of larger constituents.

As a next step, we plan to extend upon the tensor model, so that both nouns and ad-
jectives are modified by weighting syntactic dependency vectors. This will improve the
accuracy of the TENSOR model’s predictions for the semantics of the shifted adjectives.
We then want to apply the TENSOR model to verbal predications. Decomposition is not
just a feature of adjective–noun compositions, but also of verb–argument composition
and adverbial modification (Davidson 1967a). These predications are, at least in the vast
majority of cases, decomposable into a conjunction of formulas where possibly a functor
applies and shifts the meaning of each argument and of the verb itself. We expect to see
more shifting with verbs, as they combine with many different types of arguments. The
TENSOR approach generalizes to such predications without much modification.

TCL’s functor approach to composition with its decomposition property offers a
natural place within which to exploit DS composition methods like TENSOR or LVW
to inform internal, type-theoretic content. The parallelism between TCL and distribu-
tional methods of composition allows us to integrate them in principle throughout the
construction of logical form. We can insert modifications due to co-composition at a
local level so that this information interacts appropriately with scoping operators and
refine the co-composition functors as more contextual information becomes available,
something we hope to investigate in future research.

721

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

Appendix A: List of Adjective–Noun Combinations Studied

adjective noun adjective noun adjective noun

physical activity great fear grand piano
close affinity natural feeling succulent plant

moral agent natural food intense pleasure
dead air close friendship narrow portion
light aircraft complex function low price
close alley mutual fund close prisoner
wild animal physical game great promise

written application large gathering solemn promise
late application social gathering loud promise

grand army emotional greeting physical property
critical assessment social grouping personal question
mutual attraction regular guy smart question

investment bank natural habitat loud question
muddy bank long hair economic reason

spacious bank narrow hall short report
popular bank rough handling great respect
wooden bed central heating flexible sac

flat beer large house deep sea
light beer publishing house middle section

persisting belief nearby house moral sense
false belief public house formal series

young bird guest house large settlement
heavy bleeding public image low shelf

light blow bright image deep shelves
dead body shocking image heavy shoe

stupid book central importance dead silence
heavy book basic ingredient deep sleep

interesting book basic instinct heavy smoker
small bread artificial intelligence lyric soprano
deep breath public interest young soprano
large building personal interview open space
small cafeteria stupid joke low spirit

rough calculation moral judgment formal stage
early cancer deep layer emotional state

immense canvas long lecture bronze statue
modernist canvas interesting lecture famous statue

complex carbohydrate small letter succulent steak
great caution low limit heavy stick

personal charm formal linguistcs heavy storm
small child early lunch great storm
short circuit delicious lunch moral strength
easy circumstance long lunch basic substance

polluted city purplish mark moral support
socialist city light meal flat surface

modernist city delicious meal rough surface
middle class basic measure short symbol

large collection social media natural talent
yellow color regular meeting difficult task

small community narrow mind darjeeling tea
public company open mind five-o’clock tea
formal complaint stupid mistake stupid telephone

material concern grand mistake explosive temperament
formal conclusion critical moment formal test
critical condition grand mountain legal testimony

close contest forward movement secret testimony
long corridor short news shocking testimony
large country printed newspaper economic theory

narrow crack owned newspaper deep thought
large crane small number sudden thought

mechanical crane close observation ridiculous thought
feathery crane head officer dead time

early death public official long time

722

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

Appendix A
(continued)

adjective noun adjective noun adjective noun

emotional decision underground organization light touch
explosive device heavy paper heavy traffic

wooden dialogue central part close translation
large difference deep part low trick
deep discussion great party small tube

functional disorder late payment basic unit
wild dream large-value payment strong urge

young dream cash payment underground vault
light duty purplish pen wild vegetation

small dwelling yellow pen early version
forward earnings flexible person easy victim
physical effect short person grand view

functional element strong person deep voice
young elephant difficult person rough voice
small enclosure social person low voice
grand end stupid person artificial waterway

material entity intense person formal wear
easy exam rough person head wind

heavy expense emotional person natural world
dead face complex personality regular writer

References
Asher, Nicholas. 2011. Lexical Meaning in

Context: A Web of Words. Cambridge
University Press.

Baroni, Marco, Silvia Bernardini,
Adriano Ferraresi, and Eros Zanchetta.
2009. The Wacky Wide Web: A collection
of very large linguistically processed
Web-crawled corpora. Language Resources
and Evaluation, 43(3):209–226.

Baroni, Marco and Roberto Zamparelli.
2010. Nouns are vectors, adjectives are
matrices: Representing adjective–noun
constructions in semantic space. In
Proceedings of the 2010 Conference on
Empirical Methods in Natural Language
Processing, pages 1183–1193, Cambridge,
MA.

Beltagy, Islam, Katrin Erk, and Raymond J.
Mooney. 2014. Probabilistic soft logic
for semantic textual similarity. In
Proceedings of the 52nd Annual Meeting
of the Association for Computational
Linguistics, pages 1210–1219,
Baltimore, MD.

Boleda, Gemma, Marco Baroni, Louise
McNally, and Nghia Pham. 2013.
Intensionality was only alleged:
On adjective–noun composition in
distributional semantics. In Proceedings
of the 10th International Conference on
Computational Linguistics, pages 35–46,
Potsdam.

Bride, Antoine, Tim Van de Cruys, and
Nicholas Asher. 2015. A generalisation of
lexical functions for composition in
distributional semantics. In Proceedings of
the 53rd Annual Meeting of the Association
for Computational Linguistics and the
7th International Joint Conference on
Natural Language Processing (Volume 1:
Long Papers), pages 281–291, Beijing.

Chi, Yun and Shenghuo Zhu. 2013.
Facetcube: A general framework for
non-negative tensor factorization.
Knowledge and Information Systems,
37(1):155–179.

Church, Kenneth W. and Patrick Hanks.
1990. Word association norms, mutual
information & lexicography. Computational
Linguistics, 16(1):22–29.

Coecke, B., M. Sadrzadeh, and S. Clark.
2011. Mathematical foundations for a
compositional distributional model of
meaning. Linguistic Analysis: A Festschrift
for Joachim Lambek, 36(1-4):345–384.

Davidson, Donald. 1967a. The logical form
of action sentences. In N. Rescher, editor,
The Logic of Decision and Action. University
of Pittsburg Press.

Davidson, Donald. 1967b. Truth and
meaning. Synthese, 17(1):304–323.

Ding, Chris, Tao Li, and Wei Peng.
2008. On the equivalence between
non-negative matrix factorization and
probabilistic latent semantic indexing.

723

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Computational Linguistics Volume 42, Number 4

Computational Statistics & Data Analysis,
52(8):3913–3927.

Dinu, Georgiana and Mirella Lapata. 2010.
Measuring distributional similarity in
context. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, pages 1162–1172,
Cambridge, MA.

Dinu, Georgiana, Nghia The Pham, and
Marco Baroni. 2013. Dissect—
distributional semantics composition
toolkit. In Proceedings of the 51st Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations,
pages 31–36, Sofia.

Do, Quang, Yee Seng Chan, and Dan Roth.
2011. Minimally supervised event
causality identification. In Proceedings of the
2011 Conference on Empirical Methods in
Natural Language Processing,
pages 294–303, Edinburgh.

Erk, Katrin and Sebastian Padó. 2008. A
structured vector space model for word
meaning in context. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 897–906,
Waikiki.

Erk, Katrin and Sebastian Padó. 2009.
Paraphrase assessment in structured
vector space: Exploring parameters and
datasets. In Proceedings of the Workshop on
Geometrical Models of Natural Language
Semantics, pages 57–65, Athens.

Erk, Katrin and Sebastian Padó. 2010.
Exemplar-based models for word meaning
in context. In Proceedings of the 48th Annual
Meeting of the Association for Computational
Linguistics, Proceedings of the Conference
Short Papers, pages 92–97, Uppsala.

Frege, Gottlob. 1985. On sense and meaning.
In A. P. Martinich, editor, The Philosophy of
Language. Oxford University Press.

Garrette, Dan, Katrin Erk, and Raymond
Mooney. 2011. Integrating logical
representations with probabilistic
information using Markov logic. In
Proceedings of the International Conference on
Computational Semantics, pages 1162–1172,
Oxford.

Gaussier, Eric and Cyril Goutte. 2005.
Relation between PLSA and NMF and
implications. In Proceedings of the 28th
Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval, pages 601–602,
Salvador.

Girju, Roxana, Preslav Nakov, Vivi Nastase,
Stan Szpakowicz, Peter Turney, and
Deniz Yuret. 2009. Classification of

semantic relations between nominals.
Language Resources and Evaluation,
43:105–121.

Grefenstette, Edward and Mehrnoosh
Sadrzadeh. 2011a. Experimental support
for a categorical compositional
distributional model of meaning. In
Proceedings of the 2011 Conference on
Empirical Methods in Natural Language
Processing, pages 1394–1404, Edinburgh.

Grefenstette, Edward and Mehrnoosh
Sadrzadeh. 2011b. Experimenting with
transitive verbs in a discocat. In Proceedings
of the GEMS 2011 Workshop on GEometrical
Models of Natural Language Semantics,
pages 62–66, Edinburgh.

Howard, William A. 1980. The formulas-
as-types notion of construction.
In P. Seldin and J. R. Hindley, editors,
To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism.
Academic Press, pages 479–490.

Kamp, Hans and Barbara Partee. 1995.
Prototype theory and compositionality.
Cognition, 57(2):129–191.

Kripke, Saul. A. 1980. Naming and
Necessity. Harvard University Press,
Cambridge, MA.

Kruszewski, German, Denis Paperno,
and Marco Baroni. 2015. Deriving
Boolean structures from distributional
vectors. Transactions of the Association for
Computational Linguistics, 3:375–388.

Lee, Daniel D. and H. Sebastian Seung.
1999. Learning the parts of objects by
non-negative matrix factorization.
Nature, 401(6755):788–791.

Lee, Daniel D. and H. Sebastian Seung.
2000. Algorithms for non-negative matrix
factorization. In Advances in Neural
Information Processing Systems 13,
pages 556–562.

Lewis, David. 1970. General semantics.
Synthese, 22(1):18–67.

Lewis, Mike and Mark Steedman. 2013.
Combining distributional and logical
semantics. Transactions of the Association for
Computational Linguistics, 1:179–192.

Magidor, Ofra. 2013. Category Mistakes.
Oxford University Press.

McNally, Louise and Gemma Boleda.
2016. Conceptual vs. referential affordance
in concept composition. In Yoad Winter
and James Hampton, editors, Concept
Composition and Experimental Semantics/
Pragmatics. Springer.

Melamud, Oren, Jonathan Berant, Ido Dagan,
Jacob Goldberger, and Idan Szpektor. 2013.
A two level model for context sensitive
inference rules. In Proceedings of the

724

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

Asher et al. Integrating Type Theory and Distributional Semantics

51st Annual Meeting of the Association for
Computational Linguistics,
pages 1331–1340, Sofia.

Mel’cuk, Igor. 2006. Explanatory
combinatorial dictionary. Open Problems in
Linguistics and Lexicography, pages 225–355.

Mitchell, Jeff and Mirella Lapata. 2010.
Composition in distributional models
of semantics. Cognitive Science,
34(8):1388–1429.

Montague, Richard. 1974. Formal Philosophy.
Yale University Press, New Haven, CT.

Nivre, Joakim, Johan Hall, and Jens Nilsson.
2006. Maltparser: A data-driven
parser-generator for dependency parsing.
In Proceedings of the Fifth International
Conference on Language Resources and
Evaluation, pages 2216–2219, Genoa.

Partee, Barbara. 1995. Lexical semantics
and compositionality. In L. Gleitman and
M. Liberman, editors, An Invitation to
Cognitive Science: Language, vol. 1,
pages 311–360, Cambridge, MIT Press.

Partee, Barbara H. 2010. Privative adjectives:
Subsective plus coercion. In R. Bauerle, U.
Reyle, and T. E. Zimmermann, editors,
Presuppositions and Discourse: Essays Offered
to Hans Kamp. Elsevier, pages 273–285.

Pustejovsky, James. 1995. The Generative
Lexicon. MIT Press.

Putnam, Hilary. 1975. The meaning of
‘meaning’. In Keith Gunderson, editor,
Language, Mind and Knowledge. Minnesota
Studies in the Philosophy of Science, vol. 7,
pages 131–193.

Roller, Stephen, Katrin Erk, and Gemma
Boleda. 2014. Inclusive yet selective:
Supervised distributional hypernymy
detection. In Proceedings of the Twenty Fifth
International Conference on Computational
Linguistics, pages 1025–1036, Dublin.

Thater, Stefan, Hagen Fürstenau, and
Manfred Pinkal. 2010. Contextualizing
semantic representations using
syntactically enriched vector models. In
Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics,
pages 948–957, Uppsala.

Toutanova, Kristina, Dan Klein, Christopher
Manning, and Yoram Singer. 2003.
Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proceedings
of the Human Language Technology
Conference of the North American Chapter of
the Association for Computational Linguistics,
pages 252–259, Edmonton.

Toutanova, Kristina and Christopher D.
Manning. 2000. Enriching the knowledge
sources used in a maximum entropy
part-of-speech tagger. In Proceedings of the
Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and
Very Large Corpora (EMNLP/VLC-2000),
pages 63–70, Hong Kong.

Van de Cruys, Tim. 2011. Two multivariate
generalizations of pointwise mutual
information. In Proceedings of the Workshop
on Distributional Semantics and
Compositionality, pages 16–20, Portland,
OR.

Van de Cruys, Tim, Thierry Poibeau, and
Anna Korhonen. 2011. Latent vector
weighting for word meaning in context. In
Proceedings of the Conference on Empirical
Methods in Natural Language Processing,
pages 1012–1022, Edinburgh.

Weeds, Julie, David Weir, and Diana
McCarthy. 2004. Characterising measures
of lexical distributional similarity. In
Proceedings of the 20th International
Conference on Computational Linguistics,
pages 1015–1021, Geneva.

725

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00264 by guest on 16 April 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

