Publication Cover

Follow

More About The Review


Article Metrics

Altmetric

About article usage data:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean euismod bibendum laoreet. Proin gravida dolor sit amet lacus accumsan et viverra justo commodo. Proin sodales pulvinar tempor. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.


Follow

Follow

Abstract

Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation, but presume that the number of clusters is large. Standard asymptotic tests can over-reject, however, with few (five to thirty) clusters. We investigate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the example of Bertrand, Duflo, and Mullainathan (2004). Rejection rates of 10% using standard methods can be reduced to the nominal size of 5% using our methods.

A. Colin Cameron
Department of Economics, University of California–Davis
Jonah B. Gelbach
Department of Economics, University of Arizona
Douglas L. Miller
Department of Economics, University of California–Davis

Abstract

Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation, but presume that the number of clusters is large. Standard asymptotic tests can over-reject, however, with few (five to thirty) clusters. We investigate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the example of Bertrand, Duflo, and Mullainathan (2004). Rejection rates of 10% using standard methods can be reduced to the nominal size of 5% using our methods.

A. Colin Cameron
Department of Economics, University of California–Davis
Jonah B. Gelbach
Department of Economics, University of Arizona
Douglas L. Miller
Department of Economics, University of California–Davis