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In learning theory, the training and test sets are assumed to be drawn
from the same probability distribution. This assumption is also followed
in practical situations, where matching the training and test distributions
is considered desirable. Contrary to conventional wisdom, we show that
mismatched training and test distributions in supervised learning can in
fact outperform matched distributions in terms of the bottom line, the out-
of-sample performance, independent of the target function in question.
This surprising result has theoretical and algorithmic ramifications that
we discuss.

1 Introduction

A basic assumption in learning theory is that the training and test sets
are drawn from the same probability distribution. Indeed, adjustments to
the theory become necessary when there is a mismatch between training
and test distributions. As we discuss, a significant body of work intro-
duces techniques that transform mismatched training and test sets in order
to create matched versions. However, the fact that the theory requires a
matched distribution assumption to go through does not necessarily mean
that matched distributions will lead to better performance, just that they
lead to theoretically more predictable performance. The question of whether
they do lead to better performance has not been addressed in the case of
supervised learning, perhaps because of an intuitive expectation that the
answer would be yes.

The result we report here is that, surprisingly, mismatched distributions
can outperform matched distributions. Specifically, the expected out-of-
sample performance in supervised learning can be better if the test set
is drawn from a probability distribution that is different from the prob-
ability distribution from which the training data had been drawn, and
vice versa. In the case of active learning, this would not be so surprising
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since active learning algorithms deliberately alter the training distribu-
tion as more information is gathered about where the decision boundary
of the target function is, for example. In our case of supervised learning,
we deal with an unknown target function where the decision boundary
can be anywhere. Nonetheless, we show that a mismatched distribution,
unrelated to any decision boundary, can still outperform the matched dis-
tribution, a surprising fact that runs against the conventional wisdom in su-
pervised learning. We first put our result in the context of previous matching
work and then discuss the result from theoretical and empirical points of
view.

In many practical situations, the assumption that the training and test sets
are drawn from the same probability distribution does not hold. Examples
where this mismatch has required corrections can be found in natural lan-
guage processing (Jiang & Zhai, 2007), speech recognition (Blitzer, Dredze,
& Pereira, 2007), and recommender systems, among others. The problem is
referred to as data set shift and sometimes is subdivided into covariate shift
and sample selection bias, as described in Quiñonero-Candela, Sugiyama,
Schwaighofer, and Lawrence (2009). Various methods have been devised to
correct this problem and is part of the ongoing work on domain adaptation
and transfer learning. The numerous methods can be roughly divided into
four types (Margolis, 2011).

The first type is referred to as instance weighting for covariate shift, in
which weights are given to points in the training set, such that the two
distributions become effectively matched. Some of these methods include
discriminative approaches as in Bickel, Brückner, and Scheffer (2007, 2009);
others make assumptions regarding the source of the bias and explicitly
model a selection bias variable (Zadrozny, 2004); others try to match the
two distributions in some reproducing kernel hilbert space as kernel mean
matching (Huang, Smola, Gretton, Borgwardt, & Schölkopf, 2007); oth-
ers estimate directly the weights by using criteria as the Kullback-Liebler
divergence as in KLIEP (Sugiyama, Nakajima, Kashima, Von Buenau, &
Kawanabe, 2008) or least squares deviation as in LSIF (Kanamori, Hido, &
Sugiyama, 2009), among others. Additional approaches are given in Rosset,
Zhu, Zou, and Hastie (2004); Cortes, Mohri, Riley, and Rostamizadeh
(2008), and Ren, Shi, Fan, and Yu (2008). All of these methods rely on find-
ing weights, which is not trivial as the actual distributions are not known;
furthermore, the addition of weights reduces the effective sample size of
the training set, hurting the out-of-sample performance (Shimodaira, 2000).
Cross-validation is also an issue and is addressed in methods like impor-
tance weighting cross validation (Sugiyama et al., 2008). Learning bounds
for the instance weighting setting are shown in Cortes, Mansour, and Mohri
(2010) and Zhang, Zhang, and Ye (2012). Further theoretical results in a more
general setting of learning from different domains are given in Ben-David
et al. (2010).
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The second type of methods uses self-labeling or cotraining techniques
so that samples from the test set, which are unlabeled, are introduced
in the training set in order to match the distributions; they are labeled
using the labeled data. A final model is then reestimated with these new
points. Some of these methods are described in Blum and Mitchell (1998),
Leggetter and Woodland (1995), and Digalakis, Rtischev, and Neumeyer
(1995). A third approach is to change the feature representation, so that fea-
tures are selected, discarded, or transformed in an effort to make training
and test distributions remain similar. This idea is explored in various meth-
ods, including Blitzer et al. (2007), Blitzer, McDonald, and Pereira (2006),
Ben-David, Blitzer, Crammer, and Pereira (2007), and Pan, Kwok, and Yang
(2008), among many others. Finally, cluster-based methods rely on the as-
sumption that the decision boundaries have low density probabilities (Gao,
Fan, Jiang, & Han, 2008), and hence try to label new data in regions that
are underrepresented in the training set through clustering, as proposed
in Blum (2001), and Ng, Jordan, and Weiss (2002). (For a more substantial
review on these and other methods, refer to Margolis, 2011, and Sugiyama
& Kawanabe, 2012.)

However, while great effort has been spent trying to match the training
and test distributions, a thorough analysis of the need for matching has not
been carried out. This letter shows that mismatched distributions can in
fact outperform matched distributions. This is important not only from a
theoretical point of view but also for practical reasons. The methods that
have been proposed for matching the distributions not only increase the
computational complexity of the learning algorithms but also may result
in an effective sample size reduction due to the sampling or weighting
mechanisms used for matching. Recognizing that the system may perform
better under a scenario of mismatched distributions can influence the need
for, and the extent of, matching techniques, as well as the quantitative
objective of matching algorithms.

In our analysis, we show that a mismatched distribution can be better
than a matched distribution in two directions:

• For a given training distribution PR, the best test distribution PS can
be different from PR.

• For a given test distribution PS, the best training distribution PR can
be different from PS.

The justifications for these two directions, as well as their implications,
are quite different. In a practical setting, the test distribution is usually fixed,
so the second direction reflects the practical learning problem about what
to do with the training data if they are drawn from a different distribution
from that of the test environment. One of the ramifications of this direction
is the new notion of a dual distribution. This is a training distribution PR that
is optimal to use when the test distribution is PS. A dual distribution serves
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as a new target distribution for matching algorithms. Instead of matching
the training distribution to the test distribution, it is matched to a dual of the
test distribution for optimal performance. The dual distribution depends
on only the test distribution and not on the particular target function of the
problem.

The organization of this letter is as follows. Section 2 describes extensive
simulations that give an empirical answer to the key questions and a discus-
sion of those empirical results. The theoretical analysis follows in section 3,
where analytical tools are used to show particular unmatched training and
test distributions that lead to better out-of-sample performance in a general
regression case. The notion of a dual distribution is discussed in section 4.
Section 5 explains the difference of the results presented and the dual dis-
tribution concept with related ideas in active learning, followed by the
conclusion in section 6.

2 Empirical Results

Consider the scenario where the data set R used for training by the learning
algorithm is drawn from probability distribution PR, while the data set S that
the algorithm will be tested on is drawn from distribution PS. We show here
that the performance of the learning algorithm in terms of the out-of-sample
error can be better when PS �= PR, averaging over target functions and data
set realizations. The empirical evidence, which is statistically significant,
is based on an elaborate Monte Carlo simulation that involves various
target functions and probability distributions. The details of that simulation
follow, and the results are illustrated in Figures 1 and 3.

We consider a one-dimensional input space, X ∈ [−1, 1]. There is no loss
of generality by limiting our domain because in any practical situation,
the data have a finite domain and can be rescaled to the desired interval.
We run the learning algorithm for different target functions and different
training and test distributions, and we average the out-of-sample error
over a large number of data sets generated by those distributions and over
target functions; then we compare the results for matched and mismatched
distributions.

2.1 Simulation Setup.

2.1.1 Distributions. We use 31 different probability distributions to gen-
erate R and S: 1 uniform distribution U(−1, 1), 10 truncated gaussian
distributions N ∗(0, σ 2) where σ is increased in steps of 0.3, 10 trun-
cated exponential distributions Exp∗(τ ) where τ is increased also in steps
of 0.3, and 10 truncated mixture of gaussian Distributions such that
MG(σ ) = 1

2

(
N ∗(−0.5, σ 2) + N ∗(0.5, σ 2)

)
, with σ increased in steps of 0.25.

By truncating the distributions, we mean that if X has a truncated gaussian
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distribution such that X ∼ N ∗(0, σ 2) and X̃ has a gaussian distribution with
X̃ ∼ N (0, σ 2), then

P(X ≤ x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x ≤ −1
1
Z PN(X ≤ x) −1 ≤ x ≤ 1,

1 x ≥ 1

(2.1)

where PN(X ≤ x) = P(X̃ ≤ x) and Z is a normalizing constant (Z = PN(−1 ≤
X̃ ≤ 1)). This applies as well to the truncated exponential and mixture of
gaussian distributions.

2.1.2 Data Sets. For each pair of probability distributions, we carry out
the simulation generating 1000 different target functions, running the learn-
ing algorithm, comparing the out-of-sample performance, and then aver-
aging over 100 different data set realizations. That is, each point in Figures 1
and 3 is an average over 100,000 runs with the same pair of distributions but
with different combinations of target functions and training and test sets.
The sizes of the data sets are NR = 100 and 300 and NS = 10, 000, where NR
and NS are the number of points in the training and test sets R and S.

2.1.3 Target Functions. The target functions f : [−1, 1] → [−1, 1] were
generated by taking the sign of a polynomial in the desired interval.
The polynomials were formed by choosing at random one to five roots
in the interval [−1, 1]. The learning algorithm minimized a squared loss
function using a nonlinear transformation of the input space as features.
The non-linear transformation used powers of the input variable up to the
number of roots of the polynomial plus a sinusoidal feature, which allows
the model to learn a function that is close, but not identical, to the target.
This choice of target functions allows the decision boundaries to vary in
both number and location in each realization. Hence, the results presented
do not depend on a particular target function, so that the distributions can-
not favor the regions around the boundaries, as these are changing in each
realization. Notice there is no added stochastic noise so that the two classes
could be perfectly separated with an appropriate hypothesis set.

Out-of-Sample Error. The expected out-of-sample error in this classifi-
cation task is estimated using the test set generated according to each of the
PS with NS = 10, 000. It is computed as the misclassification 0-1 loss, that is,

Ex,R[Eout(x, R, f )] = Ex,R[I[ f (x) �= h(x)]], (2.2)

where Ex[·] denotes the expected value with respect to the distribution
of random variable x, I[a] denotes the indicator function of expression a,
x ∼ PS, R is the training data set generated according to PR, and h is the
learned function.

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/NECO_a_00697 by guest on 19 April 2024
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Figure 1: Summary of Monte Carlo simulation. Plot indicates, for each
combination of probability distributions, ER∼PR,R′∼PS

[I[Ex∼PS, f [Eout(x, R, f )] <

E f,x∼PS
[Eout(x, R′, f )]]].

2.2 Fixing the Training Distribution. Figure 1 summarizes the result of
the simulation to answer the question in the first direction. This result cor-
responds to the case where NR = 100. Each entry in the matrix corresponds
to a pair of distributions PR and PS. We fix PR and evaluate the percentage
of runs where using PS �= PR yields better out-of-sample performance than
if PS = PR. That is, each entry corresponds to

ER∼PR,R′∼PS
[I[E f,x∼PS

[Eout(x, R, f )] < E f,x∼PS
[Eout(x, R′, f )]]]. (2.3)

The matrix places families of distributions together, with increasing or-
der of standard deviation or time constant. The result that immediately
stands out is that in a significant number of entries, more than 50% of the
runs have better performance when mismatched distributions are used, as
indicated by the yellow, orange, and red regions, which constitute 25.8% of
all combinations of the probability distributions used.

A number of interesting patterns are worth noting in this plot. The first
row, which corresponds to PR = U(−1, 1), falls under the category of better
performance for mismatched distributions for almost any other PS used.
There is also a block structure in the plot, which is no accident due to the
way the families of distributions are grouped. Among these blocks, the
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Figure 2: H(XR) versus H(XS): Characterization of why out-of-sample perfor-
mance is better if there is a mismatch in distributions when PR is fixed, using
entropy.

lower triangular part of the blocks in the diagonal corresponds to cases
where the distributions are mismatched but out-of-sample performance is
better. We also note that the blocks in the upper-right and lower-left corners
show the same pattern in the lower triangular part of the blocks.

Perhaps it is already clear to readers why this direction of our result is
not particularly surprising, and in fact it is not all that significant in practice
either. In the setup depicted in this part of the simulation, if we are able to
choose a test distribution, then we might as well choose a distribution that
concentrates on the region that the system learned best. Such regions are
likely to correspond to areas where large concentrations of training data
are available. This can be expressed in terms of lower-entropy test distri-
butions, which are overconcentrated around the areas of higher density of
training points. Such concentration results in a better average out-of-sample
performance than that of PS = PR.

Figure 2 illustrates the entropy of different distributions. We plot H(XR)

versus H(XS), where H(·) is the entropy and XR ∼ PS and XS ∼ PS, marking
the cases where using PS �= PR resulted in better out-of-sample performance
of the algorithm. As it is clear from the plot, these cases occur when H(XS) <

H(XR).
A simple way to think of the problem is to see that if we could

freely choose a test distribution and our learning algorithm outputs θ∗

as the learned parameters that minimize some loss function l(x, y, θ ) on a
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Figure 3: Summary of Monte Carlo simulation. The plot indicates, for each
combination of probability distributions, ER∼PR,R′∼PS

[I[E f,x∼PS
[Eout(x, R, f )] <

E f,x∼PS
[Eout(x, R′, f )]]].

training data set R = {(xi, yi)}. Then to minimize the out-of-sample error,
we would choose PS(x) = δ(x − x�), where δ is the delta-dirac function and
x� = arg min

R
(l(x, y, θ∗))) the point in the input space where the minimum

out-of-sample error occurs.
Results similar to those shown in Figure 1 are found when NR = 300.

2.3 Fixing the Test Distribution. Figure 3 shows the result of the sim-
ulation in the other direction. Each entry in the matrix again corresponds
to a pair of distributions PR and PS. However, this time we fix PS and
evaluate the percentage of runs where using PR �= PS yields better out-of-
sample performance than if PR = PS. More precisely, once again, each entry
computes the quantity in equation 2.3. Notice that this is the case that occurs
in practice, where the distribution the system will be tested on is fixed by the
problem statement. However, the training set might have been generated
with a different distribution, and we would like to determine if training
with a data set coming from PS would have resulted in better out-of-sample
performance. If the answer is yes, then one can consider the matching al-
gorithms that we mentioned to transform the training set into what would
have been generated using the alternate distribution that generated the
training set.
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The simulation result is quite surprising, as once again, there is a sig-
nificant number of entries where more than 50% of the runs have better
performance when mismatched distributions are used. For 14% of the en-
tries, a mismatch between PR and PS results in lower out-of-sample error, as
indicated by the light green, yellow, orange, and red entries in the matrix.

In this case, although the block structure is still present, there is no longer
a clear pattern relating the entropies of the training and test distributions
that allows explaining the result easily, as in the previous simulation. Notice
that there are cases where the mismatch is better if we choose PR of both
lower and higher entropy than the given PS. This is clear in the plot since
the indicated regions in the block structure are no longer lower triangular
but occupy both sides of the diagonal. This effect is analyzed further from
a theoretical point of view in the following section. Since analyzing this
effect theoretically is intractable in the case of classification tasks due to the
nonlinearities, we carry out the analysis in a regression setting, noting that
the Monte Carlo simulations show empirical evidence that the result also
holds for the classification setting.

3 Theoretical Results

We now move to a theoretical approach to the above questions. We have
shown empirical evidence that a mismatch in distributions can lead to better
out-of-sample performance in the classification setting, and now we focus
on the regression setting to cover the other major class of learning problems.
In this section, we derive expressions for the expected out-of-sample error
as a function of x, a general test point in the input space X , and R, the
training set, averaging over target functions and noise realizations. We will
derive closed-form solutions as well as bounds that show the existence of
PR �= PS with better out-of-sample performance than PR = PS.

We again consider the input space to be X = [−1, 1]. We consider the
usual regression setting where we are given a data set R = {(xi, yi)}N

i=1, and
we want to find the optimal parameter θ∗ such that for a set of functions H
parameterized by θ ,

θ∗ = arg min
θ

N∑
i=1

(yi − h(xi; θ ))2. (3.1)

We let H to be the set of linear functions in some transformed space—that
is,

h(x; θ ) = θT�M(x), (3.2)

where

�M(x) = [φ1(x) φ2(x) · · · φM(x)]T (3.3)
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Figure 4: Sample realizations of targets generated with a truncated Fourier
series of 10 harmonics.

is some nonlinear transformation of the input space defined by the set of
basis functions {φi}M

i=1. For notational simplicity, let

zM = �M(x). (3.4)

We analyze the most general regression case, where there is both stochastic
and deterministic noise (Abu-Mostafa, Magdon-Ismail, & Lin, 2012). We
take yi = f (xi) + εi, where εi represents the stochastic noise and f is more
complex than the elements of H, so f /∈ H, hence the deterministic noise.

We express the target function as

f (x) = θTz, (3.5)

where z, θ ∈ R
C, z = �C(x) with C ≥ M.

Using this formula for the target function allows for a wide variety of
functions since C can be as large as desired, and we can use an arbitrary
nonlinear transformation. Indeed, almost every function in the interval X
can be expressed this way. For example, we could take the set of {φi} to
be the harmonics of the Fourier series, so that with a large enough C, any
function f that satisfies the Dirichlet conditions can be represented this way
as a truncated Fourier series. Figure 4 shows just a few examples of the class
of functions that can be represented using such a nonlinear transformation.

We reorganize the features in z and elements of θ as

zT = [
zT

M zT
C

]
, θT = [

θT
M θT

C

]
(3.6)
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so that the first M features of z correspond to the features in the linear
transformation that H can express. We further define Z and y as usual in
regression problems,

Z =

⎡
⎢⎢⎢⎢⎢⎣

−zT
1 −

−z2T−
...

−zT
N−

⎤
⎥⎥⎥⎥⎥⎦ y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

...

yN

⎤
⎥⎥⎥⎥⎥⎦ , (3.7)

but now

Z = [ZM ZC], (3.8)

where ZM ∈ R
N×M, ZC ∈ R

N×(C−M).
Finally, we make the usual independence assumption about the noise.

Assume the stochastic noise has a diagonal covariance matrix E[εεT ] =
σ 2

n I, where ε = [ε1 ε2 · · · εN]T and I is the identity matrix. Similarly, assume
the energy of the features not included in H is finite, with E[θCθT

C ] = σ 2
CI.

For example, choosing Fourier harmonics as the nonlinear transformations
guarantees a diagonal covariance matrix.

Consider now the out-of-sample error as a function of the point x in the
input space, namely,

Eout (x, R) = ( f (x) − h(x; θ∗))2, (3.9)

where θ∗ depends on the training set R and is given by the least-squares
solution. Also notice that if we want to evaluate the out-of-sample error,
then x ∼ PS,

θ∗ = Z†
My = Z†

M(ZMθM + ZCθC + ε), (3.10)

and Z†
M = (ZT

MZM)−1ZT
M.

Substituting, we get

Eε,θC
[Eout (x, R)] = Eε,θC

[∥∥zTθ − zT
M(Z†

M(ZMθM + ZCθC + ε)
∥∥2]

= Eε,θC

[∥∥zT
CθC − zT

MZ†
M(ZCθC + ε)

∥∥2]
= σ 2

C

∥∥zT
C − zT

MZ†
MZC

∥∥2 + σ 2
NzT

M

(
ZT

MZM

)−1
zM, (3.11)

where we have used the assumption about the noise and recall z = �(x)

where x ∼ PS.
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Figure 5: Monte Carlo simulation for ER∼PR,R′∼PS
[I[(Ex,θC,ε

[Eout (x, R)] < Ex,θC,ε

[Eout (x, R′)]]], M = 11, C = 21, N = 500, and σN = σC = 0.2.

Notice that expression 3.11 is independent of θ as well as of the noise, and
the only remaining randomness in the expression comes from generating R,
which determines ZM, and from z, the point chosen to test the error, making
the analysis very general.

Now, we are interested in minimizing the expected out-of-sample error.
Let R denote a training data set generated according to PR = PS and R′ a
data set generated according to PR �= PS. Can we find PR �= PS such that

ER,x,θC,ε[Eout (x, R)] > ER′,x,θC
[Eout (x, R′)]? (3.12)

The simulation shown in section 2.3, although in a classification setting,
suggests that this is the case. For completeness, we run the same Monte
Carlo simulation in this regression setting. The advantage is that the closed-
form expression found already averages over target functions and noise,
allowing us to run in a shorter time more combinations of PR and PS, so
that we only need to Monte Carlo the matrix Z. The expectation over x ∼ PS
can also be taken analytically with the closed-form expression found. In
this case, we consider the same families of distributions, but we vary the
standard deviation of the distribution in smaller steps to obtain a finer
grid.

Figure 5 indicates that the question posed in equation 3.12 has an af-
firmative answer in 21% of the PR �= PS combinations that we considered.
This particular simulation used the Fourier harmonics up to order 5, so that
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M = 11, while the target used harmonics up to order 10, so that C = 21.
Both σC = σN = 0.2, and N = 500. Each entry in the matrix computes

ER∼PR,R′∼PS
[I[(Ex,θC,ε[Eout (x, R)] < Ex,θC,ε[Eout (x, R′)]]], (3.13)

which is the same quantity as that of equation 2.3, except that now f is
determined by θC.

Notice that as shown in Figure 3, the cases where mismatched distri-
butions outperform matched ones cannot be explained using an entropy
argument, as was the case in section 2.2. Notice also that there are now
combinations for PR and PS where almost 100% of the simulations returned
lower out-of-sample error for mismatched distributions, especially when PS
was a truncated gaussian with small standard deviation (σ = 0.2) or when
PS was a mixture of two gaussians with σ = 0.2. In addition, we note the
similarity between this simulation and the one shown for the classification
setting in Figure 3.

We varied the size of N in order to see the effect of the sample size. We see
very little variation in the results. Holding the other parameters constant,
we obtain a very similar result. For N = 1000 and N = 3000, we obtain an
affirmative answer to the question posed in equation 3.12 in 21% and 20%
of the cases where PR �= PS, respectively, so the result does not change from
what we obtained in the N = 500 case. For N = 100, the percentage is even
higher, at 30%. Hence, it is clear that although the number of combinations of
distributions for which a mismatch between training and test distributions
is larger for smaller N, the result still holds as N grows. Notice that in
the simulations, the target function has 21 parameters. Hence, roughly for
N = 100, there are effectively 5 samples per parameter, while for N = 3000,
there are 150 samples per parameter. The latter is quite a large sample size
given the complexity of the target function.

Going back to the derived expressions, a closed-form solution for the
expected out-of-sample error is given by

E[Eout (x, R)] = ER

∫ ∞

−∞
σ 2

C

∥∥zT
C − zT

MZ†
MZC

∥∥2
PS(x)dx

+
∫ ∞

−∞
σ 2

NzT
M

(
ZT

MZM

)−1
zMPS(x)dx. (3.14)

It cannot be further reduced analytically due to the inverse matrix terms. Yet,
if we assume C = M so that only stochastic noise is present, the expression
reduces to

Eε,R,x[Eout (x, R)] = ER

∫ ∞

−∞
σ 2

NzT (ZTZ)−1zPS(x)dx

≥ σ 2
N

∫ ∞

−∞
zT (ER[ZTZ])−1zPS(x)dx, (3.15)
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where we use the result in Groves and Rothenberg (1969) for the expected
value of the inverse of a matrix. With this expression, we can find an example
of a mismatched training distribution that leads to better out-of-sample
results. Again, without loss of generality, we pick the linear transformation
consisting of Fourier harmonics, namely,

z = [1 cos(πx) sin(πx) · · · cos(mπx) sin(mπx)]T , (3.16)

as this allows a vast representation of target functions. Here, M = 2m + 1.
If PR is a uniform distribution overX or a gaussian distribution truncated

to this interval, then

ER[ZTZ] = ER

N∑
i=1

ziz
T
i

= Ndiag(1, 0.5, 0.5, . . . , 0.5). (3.17)

The above result is trivial for the uniform distribution case and can be
easily evaluated with numerical integration for the truncated gaussians.
This implies that

Eε,R,x[Eout (x, R)] ≥ σ 2
n Ex

[
2m + 1

N

]

= σ 2
n M
N

. (3.18)

Now instead, pick R′ to be distributed according to Uniform[−a, a]. In this
case,

ER[ZTZ]i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinc( ja) if i = 1, j is even

sinc(ia) if j = 1, i is even

1/2 (1 + (−1)i sinc(ia)) if i = j �= 1

1/2
(
sinc((i + j)a) if i �= j, and

+ sinc((i − j)a
)

i and j odd

1/2(sinc
(
(i + j)a) if i �= j, and

− sinc((i − j)a
)

i and j even

0 else

. (3.19)

Figure 6 shows the closed-form bound for various choices of a and M =
10, choosing PS to be a truncated gaussian with σ = 0.4. The dotted line
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Figure 6: Bound for ER,x,ε
[Eout (x, R)] when R is generated with PR = PS =

N ∗(0, 0.42) and for PR �= PS with PR = Uniform[−a, a].

shows the bound for the case PR = PS. As it is clear from the plot, there are
various choices for a so that equation 3.12 is satisfied.

Since this is only a lower bound on the error, we verify that the minimum
suggested by the bound does correspond to a superior mismatched distri-
bution. We Monte-Carlo the value for both cases considered: we choose
PS = N ∗(0, 0.42) and generate R according to PS, while R′ is generated ac-
cording to U[−0.97, 0.97]. Notice that we use a = 0.97 because this choice
results in the lowest error bound from Figure 6. Using m = 10, N = 500, and
averaging over 108 realizations of R and R′, we obtain

ER,x,θ,ε[Eout (x, R)] = 0.0440σ 2
N > ER′,x,θ,ε[Eout (x, R′)] = 0.0429σ 2

N. (3.20)

Hence, we have a concrete example of a distribution PR that is different
from PS (see Figure 7) that leads to better out-of-sample performance, av-
eraging over noise realizations and target functions. The existence of such
distributions leads to the concept of a dual distribution, which we define in
the following section.

4 Dual Distributions

Given a distribution PS, we define a dual distribution P�
R to be

P�
R = arg min

PR

ER,x, f,ε[Eout (x, R)] (4.1)
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Figure 7: Pair of distributions PR �= PS such that expected out-of-sample error
is lower when R is generated according to PR rather than according to PS for a
regression problem in the domain X = [−1, 1].

where R is a data set generated according to PR and x ∼ PS. As shown in
the previous sections, it is not always the case that P�

R = PS. The problem, of
course, has the constraint that PR must be a distribution.

We illustrate the concept of a dual distribution with an example where
P�

R can be readily found. Assume again that we want to solve a regression
problem, but for simplicity, let us assume that only stochastic noise is present
in the problem. Furthermore, we use a discrete input space X = {xi}d

i=1,
so that PR and PS are vectors, transforming the functional minimization
problem into an optimization problem in d − 1 dimensions.

Given R, we can compute the expected out-of-sample error with respect
to PS, the noise, and the target functions as

Ex,ε,θ [Eout (R)] = σ 2
N

d∑
i=1

zT
i (ZTZ)−1ziPS(xi). (4.2)

In this case, there are
∑N

i=1

(d
i

)
possible data sets of size N (allowing for

repetition of points in the data set) that could be obtained for any given
PR. To simplify the notation, since X is finite, we assign each of the points
a number, from 1 to d, and we denote the out-of-sample error for each of
these data sets as Ei1,i2,...,iN

, where ik indicates the element number in X that
corresponds to the kth data point in R.

Hence, we can find the expected out-of-sample error with respect to PR as

ER,x,ε,θ [Eout (R)] =
∑

i1,i2,...,iN

pi1
pi2

· · · piN
Ei1,i2,...,iN

, (4.3)
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where all the Ei1,...,iN
can be found with equation 4.2. Therefore, P�

R is the
solution to the following optimization problem:

min
p1,p2,...,pd

∑
i1,i2,...,iN

pi1
pi2

· · · piN
Ei1,i2,...,iN

, (4.4)

subject to
d∑

i=1

pi = 1

pi ≥ 0.

For illustration purposes, let N = 3:

z = �(x) = [cos(πx) sin(πx)]T (4.5)

X ={−3/4,−1/4, 0, 1/4, 3/4}
PS = [1/3, 0, 1/3, 1/3, 0],

[x1, x2, x3, x4, x5] = [−3/4,−1/4, 0, 1/4, 3/4].

Solving the optimization problem given in equation 4.4 yields P�
R �= PS, with

P�
R = [0.4672, 0.1140, 0.1140, 0.000, 0.3048]. (4.6)

For this example,

ER,x,ε,θ = 1.5778σ 2
n > ER′,x,ε,θ = 1.1391σ 2

n , (4.7)

where R is generated according to PS and R′ according to P�
R. Clearly

there is a gain by training with the dual distribution. When running
the optimization for data sets that have repeated points that result in
undefined out-of-sample error, we conservatively take their error to be the
maximum finite out-of-sample error over all combinations of possible data
sets. Figure 8 shows the dual distribution found, along with the given PS.

A very important property of the optimization problem, formulated in
equation 4.4 is that it is a convex optimization program. In fact, it is a
geometric program, although different from a standard geometric program
since the equality constraint is not a monomial. Yet the problem is still
convex. To illustrate this, let

ψi = log(pi), (4.8)

Li1,...,iN
= log(Ei1,...,iN

). (4.9)
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Figure 8: Probability mass functions for a given PS and its dual P�
R

in a regression problem with stochastic noise, discrete input space X =
{−3/4, −1/4, 0, 1/4, 3/4}, and N = 3.

This change of variables implicitly makes pi > 0 so that the inequality con-
straints can be removed. Also, the problem can be rewritten as

min
ψ1,ψ2,...,ψd

∑
i1,i2,...,iN

e
∑N

k=1 ψik
+Li1 ,i2 ,...,iN , (4.10)

subject to
d∑

i=1

eψ
i = 1. (4.11)

Notice that the objective function is a sum of exponential functions of affine
functions of the ψi. Since exponential functions are convex, affine transfor-
mations of convex functions are also convex, and sums of convex functions
result in a convex function, the objective is convex (Boyd & Vandenberghe,
2004). Following the same argument, the equality constraint is also convex,
so that the optimization problem is a convex program.

Hence, if a minimum is found, this is the global optimum with a corre-
sponding dual distribution. This problem can be solved with any convex
optimization package. Furthermore, in most applications, PS is unknown
and is estimated by binning the data, obtaining a discrete version of PS.
Hence, this discrete formulation is appropriate to find dual distributions in
such settings.
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In the continuous case, the problem of finding the dual distribution can
be written as

min
p

J(p)=
∫

xN

· · ·
∫

x1

�(x1, . . . , xN)

N∏
i=1

p(xi)dx1 . . . dxN (4.12)

subject to
∫

p(x)dx = 1

p(x) ≥ 0,

where

�(x1, . . . , xN) =
∫

x
Eε, f [Eout (x, x1, . . . , xN)]PS(x)dx. (4.13)

Notice that for clarity, we write Eout(x, R) as Eout (x, x1, . . . , xN). Also notice
that in the regression case considered in the previous section, there is a
closed-form solution for Eout (x1, . . . , xN). For simplicity, in the case where
there is only stochastic noise present, it is

Eε, f [Eout(x1, . . . , xN)] = σ 2
N�(x)T

(
N∑

i=1

�(xi)�(xi)
T

)−1

�(x). (4.14)

Functional optimization methods like functional gradient descent can be
used to solve the above problem.

The existence of a dual distribution has the direct implication that the
algorithms mentioned in section 1 should be used to match PR to P�

R rather
than to PS. This applies even to cases where PR is in fact equal to PS, as it is
conceivable that there will be gains if we now match to a dual distribution
using P�

R as the quantitative objective for the matching algorithms. Hence,
this new concept applies to every learning scenario in the supervised learn-
ing batch setting, not only to scenarios where there is a mismatch between
training and test distributions.

5 Difference with Active Learning

The concept of a dual distribution in supervised learning is somewhat re-
lated to similar ideas in active learning and experimental design. Especially,
the methods of batch active learning, where a design distribution is found
in order to minimize the error, seem to be solving a similar problem to
the dual distribution. However, the fundamental difference is that active
learning finds such optimal distribution given a particular target function.
Hence, most methods rely on the information given by the target func-
tion in order to find a better training distribution. A common example is
when distributions give more weight to points around the boundaries of
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the target function. Yet the problem of finding the dual distribution is in-
dependent of the target function. The Monte Carlo simulations presented,
as well as the bounds shown, average over different realizations of target
functions.

For example, Kanamori and Shimodaira (2003) describe an algorithm to
find an appropriate design distribution that will lower the out-of-sample
error. In the algorithm proposed, a first parameter is estimated with s data
points, and with this parameter, the optimal design distribution is found.
Having a new design distribution, T−s points are sampled from it, and a
final parameter is then estimated. Notice, however, that the optimal design
distribution is dependent on the target function. In the results we present,
if a dual distribution is found given a particular test distribution, such
distribution is optimal independent of the target function.

Other papers in the active learning community that focus on linear re-
gression (e.g., Sugiyama, 2006) seem closely related to our work. For these,
results apply to linear regression only and consider the out-of-sample error
conditioned on a given training set. The nice property of the out-of-sample
error in linear regression is that it is independent of the target function. This
is the reason that even in the active learning setting, the dependence of the
target function disappears and the mathematical analysis looks similar to
the one we present. Yet although our analysis is done with linear regression
and hence uses similar mathematical formulas, our approach is based on
averaging over realizations of training sets and of target functions in the su-
pervised learning scenario rather than in the cases addressed in Kanamori
and Shimodaira (2003) and Sugiyama (2006). Furthermore, the problem of
finding the dual distribution and the results presented can be applied to
other learning algorithms besides linear regression for the classification and
regression problems in the supervised learning setting.

Another difference that may stand out is the way the design distribu-
tion is used once it is found in the active learning papers, as opposed to
how we propose to use the dual distribution here. In the active learning
scenario, points are sampled from the design distribution, but in order to
avoid obtaining a biased estimator, as shown in Shimodaira (2000), the loss
function is weighted for these points with w(x) = q(x)/p(x), following their
notation, where q(x) is the test distribution (PS(x)) and p(x) is the design
distribution found. Notice that in the simulations presented in section 3,
we do not reweight the points but instead explicitly allow a mismatch be-
tween PS and PR. Furthermore, in the supervised learning setting, where
the training set is fixed and we are not allowed to sample new points,
we propose that matching algorithms, as the ones described in section 1, be
used to match the given training set to the dual distribution. In this case,
the objective is to have weights w(x) = P�

R(x)/PS(x), so that the training
set appears distributed as the dual distribution. These weights are actually
inverse to those used in the active learning algorithms described. Although
we are aware that the estimator computed in the linear regression setting
will be biased when we use the dual distribution, we are concerned with
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minimizing the out-of-sample error, which takes into account both bias
and variance; hence, we may obtain a biased estimator but improve the
mean-squared error performance as shown both analytically and through
the simulation in section 3.

Furthermore, the results shown in Shimodaira (2000) hold only in the
asymptotic case, and since we are dealing with the supervised learning sce-
nario where only a finite training sample is available, the same assumptions
are not valid. Thus, it is no longer optimal to use the mentioned weighting
mechanism when N is not sufficiently large, as also shown in Shimodaira
(2000). In the active learning setting, it is desirable that as more points are
sampled, the proposed algorithms have performance guarantees. Hence,
the algorithms are designed to satisfy conditions such as the consistency
of the estimator and unbiasedness in the asymptotic case, which explains
why the active learning algorithms use the above-mentioned weighting
mechanism. In our setting, minimizing the out-of-sample performance with
a fixed-size training set is our main objective, which is why the two ap-
proaches differ.

6 Conclusion

We have demonstrated through both empirical evidence and analytical
bounds that in a learning scenario, in both classification and regression
settings, using a distribution to generate the training data that is different
from the distribution of the test data can lead to better out-of-sample perfor-
mance, regardless of the target function considered. The empirical results
show that this event is not rare, and the theoretical bounds allow us to find
concrete cases where this occurs.

This introduces the idea of a dual distribution, namely, a distribution PR
different from a given PS that leads to the minimum out-of-sample error.
Finding this dual corresponds to solving a functional optimization problem,
which can be reduced to a convex d-dimensional optimization problem if
we consider a discrete input space.

The importance of this result is that the extensive literature that proposes
methods to match training and test distributions in the cases where PR �= PS
can be modified so that PR is matched to a dual distribution of PS. This
means that those methods may work even in cases where PR = PS.
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