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How much carbon can humans safely emit into
the atmosphere? Climate scientists argue that a 2
degree Celsius (about 4 degree Fahrenheit) increase
in global mean temperature is a threshold above
which the probability of highly adverse conse-
quences grows signi½cantly. Such an increase would
correspond to roughly a trillion tons of total human-
caused carbon emissions over time.1 If one trillion
tons is humanity’s carbon budget, how much have
we used so far? How fast will we emit the remainder
under current trends? And what can we do to make
sure that we don’t bust the budget?

To consider the relative contributions of different
variables, ClimateWorks, a foundation that supports
public policies that mitigate climate change, and 
its partners at Climate Interactive developed the
system-dynamics computer model En-roads

(Energy–Rapid Overview and Decision-Support
simulator). En-roads is a global model that assess-
es how changes in energy supply and demand might
affect emissions and, in turn, climate outcomes.2 It
is designed to rapidly assess the impact of various
policy scenarios on cumulative emissions by manip-
ulating variables as diverse as global gdp, energy
ef½ciency, innovation, carbon price, and fuel mix. 

Abstract: There is a consensus among scientists that stark dangers await in a world where the global
mean temperature rises by more than about 2 degrees Celsius. That threshold corresponds to a collective
human carbon emissions “budget” of around a trillion tons, of which half has been spent. This paper
uses a new simulation model to look at strategies to stay within that budget, speci½cally assessing the
impact of improvements in energy ef½ciency, aggressive deployment of renewables, and energy technol-
ogy innovation. The simulations examine the timing of investments, turnover of capital stock, and the
effect of learning on costs, among other factors. The results indicate that ef½ciency, renewables, and tech-
nology innovation are all required to keep humanity within the trillion-ton budget. Even so, these measures
are not by themselves suf½cient: changes in land use and a price on carbon emissions are also needed.
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The simulations underlying this essay
emphasize the dynamics of the transition
to clean energy. Changes in energy sys-
tems take time because energy production
relies on large, expensive infrastructure
that is slow to turn over. The oil economy,
for example, entails a vast network for
exploration, drilling, transport, re½ning,
production, automobile manufacture,
highway construction, and even human-
settlement patterns. Each of these ele-
ments cost hundreds of billions of dollars
and took decades to build. The same is true
for coal production and use. To transform
these systems will take decades. 

The world has spent more than half of
the trillion-ton carbon budget. Current
trends suggest that, absent policy action,
we will exhaust the remaining half by
about 2050.3 The reality of infrastructure
“lock-in” and inertia in the global energy
supply mix further underscores how vital
it is to consider cumulative carbon emis-
sions over time, rather than assessing
them solely on an annual basis. For
instance, Figure 1 compares a business-
as-usual (bau) trajectory with a scenario
in which future emissions remain flat.
The ½gure depicts both cumulative emis-
sions and annual emissions. 

In the bau case, emissions increase
annually and sail by the trillionth ton as
early as about 2050. Conversely, one might
expect that if emissions remain at current
levels and do not rise, the duration before
we exhaust the budget would increase
signi½cantly. Yet the flat-emissions sce-
nario crosses the trillion-ton line just
about a decade later! In other words, even
if all future demand growth from this point
forward were met by zero-carbon sources, we
would still grossly overshoot the budget. This
½nding highlights the reality that it is 
not enough for us to ramp down emis-
sions or keep them flat: we must bring
them to very low levels over the next 
few decades.

En-roads allows us to investigate dif-
ferent options for remaining below the
trillionth ton and gives a sense of how
long it will take for different actions,
investments, and policies to reduce emis-
sions. The model accounts for the system-
wide interactions among different energy
options. For example, how would the ag-
gressive pursuit of energy ef½ciency affect
the growth of renewable energy? How 
do technology learning curves change the
suite of options? Underlying the model is
an extensive study of factors such as con-
struction delay times, progress ratios,
price sensitivities, historic growth rates
of speci½c energy resources, and energy-
ef½ciency potential. 

Note that En-roads is not a predictive
model; its “results”–which, in this essay,
are primarily a calculation of the year in
which carbon emissions from a given test
scenario cross the trillion-ton line–are
approximations only, accompanied by a
range of uncertainty. Instead, the model
is a scenario-builder that tests assump-
tions about how prospective changes in
the global energy supply mix might affect
climate outcomes.4

If we remain on a bau trajectory, we will
surpass the trillionth ton and the 2 degree
Celsius benchmark–the threshold that
scientists suggest is a dangerous one to
cross–around the middle of this century.
The good news is that emissions in many
parts of the industrialized world have
begun to flatten and even decline. The bad
news is that surging carbon emissions in
China, India, and other rapidly industri-
alizing countries do not yet show signs of
abating. By 2030, China’s annual carbon
emissions are projected to be around 5 bil-
lion tons, compared to around 2.8 billion
in 2010. Left unchecked, and in light of
prevailing growth rates, China’s emissions
alone could overwhelm the carbon budget
by the end of the twenty-½rst century. 
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Figure 1
Two Carbon-Emissions Trajectories, 2010–2100 

Source: All ½gures created by authors.

Cumulative Carbon Emissions

Annual Carbon Emissions

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/DAED_a_00182 by guest on 20 April 2024



11

Hal Harvey,
Franklin M.
Orr, Jr. &
Clara
Vondrich

142 (1)  Winter 2013

Locking in carbon-emitting infrastruc-
ture is among the more serious threats of
a bau world. Commercial and residential
buildings have useful lives of several
decades or more. Coal-½red power plants
remain online for up to sixty years.5 New
oil and natural gas pipelines could operate
for a half-century. Once these investments
are made, the economic imperative is to
use them. Any new zero-carbon energy
source must contend with this embedded
capital stock. After coal plants are built,
their marginal costs of operation are rela-
tively small, so the competitive bar for
new technologies is high.

The current flood of urban migration in
the developing world offers a useful case
study of lock-in. China is experiencing the
greatest urban population boom in human
history. The United Nations estimates that
Chinese cities will add 231 million people
by 2025 and another 186 million by 20506

–numbers roughly equal to the popula-
tions of Indonesia and Brazil, respectively.
To prepare for this growth, Chinese lead-
ers plan to build at least one thousand
new cities.

Well-designed cities can slash waste,
reduce air and water pollution, and pro-
vide appealing spaces for people to work,
shop, and socialize. Poorly designed cities
sprawl across the landscape, locking in
unsustainable patterns of energy use for
decades. Without policy interventions,
including tough building standards and
regulations favoring compact develop-
ment and low-carbon public transit, bau

development is likely to embed a high-
consumption pro½le that will be virtually
impossible to repair. Indeed, the Interna-
tional Energy Agency (iea) has warned
that without further action, by 2017 all
CO2 emissions permitted in its 450 Sce-
nario–in which the atmospheric con-
centration of carbon dioxide equivalents
(CO2e) stabilizes at 450 parts per million
(ppm), resulting in an average warming

of 2 degrees Celsius–will be “locked in”
by existing power plants, factories, build-
ings, and other long-lived infrastructure.7
Today’s infrastructure decisions are thus
of crucial importance to long-term cli-
mate change. Society sets structural pat-
terns for future emissions every time a
highway, power plant, factory, or house is
built. That capital stock lasts ½fty to one
hundred years or more–and every year,
contributes carbon to the atmosphere.
Furthermore, it is far more costly to repair
or retro½t any of these investments than
to get them right in the ½rst place. The
duration of those investments, in light of
the unforgiving mathematics of carbon
accumulation, means that the window
for making business-as-usual choices is
closing fast. The iea’s point is that doing
this even for another half-decade locks in
a future nobody wants to see.

However mundane it may seem, energy
ef½ciency is a vital bridge to a low-carbon
future. Ef½ciency improvements across
the transportation, power, and industry
sectors would slow or flatten the rise in
energy demand in the coming decades,
thereby making the climate problem more
solvable. Aggressive pursuit of energy-
ef½ciency solutions on the cutting edge of
engineering, technology innovation, and
thermodynamics would yield signi½cant
energy savings. Consider one example: If
a coal plant is 33 percent ef½cient (the
average in the United States), and an in-
candescent lightbulb is 5 percent ef½cient,
then the net conversion of energy to light is
about 1.65 percent. By contrast, a compact
fluorescent lightbulb (cfl, roughly 25 per-
cent ef½cient), powered by a combined-
cycle natural gas turbine (about 60 per-
cent ef½cient, using a lower-carbon fuel),
converts 15 percent of the energy to light–
almost a tenfold increase. The correspond-
ing reduction in CO2 emissions per hour
of lighting is approximately 90 percent.
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The next generation of light-emitting di-
ode lamps (leds) will garner even greater
energy savings.8 Indeed, the Department
of Energy estimates that replacing regu-
lar lightbulbs with leds could potential-
ly save 190 terawatt-hours annually, the
equivalent of lighting more than 95 mil-
lion homes or roughly 5 percent of total
U.S. electricity consumption in 2010.9

Similar opportunities exist in virtually
every sector of the economy. Not surpris-
ingly, a number of major studies have
found that energy ef½ciency measures are
a powerful tool for slashing emissions.
According to a study from the National
Academy of Sciences and the National
Academy of Engineering, the technical
abatement potential for energy ef½ciency
in the United States is large; moreover, its
cost would be low–or negative, as energy
savings would outweigh the costs of new
technologies over time.10 The study found
that U.S. energy use could fall below bau

projections by 17 to 20 percent in 2020,
and by 25 to 31 percent in 2030, provided
that “energy prices are high enough to
motivate investment in energy ef½ciency,
or if public policies are put in place that
have the same effect.”11

Globally, the prospects for energy ef½-
ciency are bright. A report published by
McKinsey & Company suggests that, with
reasonable investments in energy ef½cien-
cy, the projected growth in global energy
demand could be halved by 2020.12 The
necessary investments of roughly $170 bil-
lion annually would generate an average
internal rate of return of 17 percent, with
total energy savings estimated at $900 bil-
lion annually by 2020. The investment
strategy would target only cost-effective
opportunities, seeking ef½ciency improve-
ments across systems such as lighting,
cooling, and heating in particular, as well
as vehicles and industrial machinery. 

The authors of the report caution that
their investment strategy would face a

number of signi½cant challenges. For
instance, “two-thirds of the investment
opportunity lies in developing countries,
where consumers and businesses face a
variety of competing demands for their
scarce investment dollars.” In many sec-
tors, ef½ciency standards may have to be
implemented to overcome market fail-
ures. Nevertheless, the global potential of
energy ef½ciency to cut carbon at a low
cost is tremendous. 

What does En-roads tell us about the
effect of aggressively pursuing energy
ef½ciency? With regard to the global
economy, the model’s bau scenario as-
sumes an average annual decrease in
energy intensity (energy used per unit of
gdp) of 1.1 percent from 2010 to 2050.13

The globally aggregated En-roads model
does not allow for a manipulation of ef½-
ciency improvements across individual
sectors or regions. Instead, by varying 
the energy intensity of gdp, the model
allows us to assess the impact of a highly
ef½cient energy economy on the carbon
budget. 

Figure 2 compares two energy-ef½ciency
scenarios with a bau world: “ef½ciency”
(ee) and “ef½ciency plus” (ee+). The ee

scenario assumes an average annual im-
provement in energy intensity of roughly
2.5 percent between 2010 and 2050; ee+
assumes an average annual improvement
of roughly 3 percent. Sustained 2 to 3 per-
cent improvements are plausible given a
bau energy-intensity improvement rate of
about 1.1 percent between 2010 and 2050;
further, they are consistent with mitiga-
tion scenarios examined by other models.

In both scenarios, cumulative carbon
emissions still increase but do so more
slowly relative to bau. In the ee scenario,
for example, annual emissions in 2050 are
about 42 percent less than in the reference
case. Although annual emissions bend
downward in both test scenarios, they
ultimately flatten and rise again. Why?
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Figure 2
Ef½ciency Test Scenarios, 2010–2100

Cumulative Carbon Emissions

Annual Carbon Emissions
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Ef½ciency measures provide large energy
savings in the near term, but these gains
are overwhelmed over time if population
and gdp growth continue unabated. 

The greatest reward in achieving either
of the high-ef½ciency scenarios is that
they cut the burden for new zero-carbon
energy sources almost in half. Neverthe-
less, ef½ciency improvements alone are
not enough to avoid exceeding the budget.
The ee scenario reaches the trillionth ton
in approximately 2060; ee+ crosses that
line about ½ve years later. While arguably
modest, a ten- to ½fteen-year grace period
provides needed flexibility in the low-
carbon transition and is especially signi½-
cant because it can be attained at low cost.

How much can existing and near-term
renewable energy sources, such as solar
and wind, help? Renewable energy, ex-
cluding hydropower, is the fastest-grow-
ing source of electricity generation and is
projected to account for up to a quarter 
of global electricity generation by 2035
(compared to less than 5 percent to-
day).14 The eia predicts annual growth
rates averaging 3.1 percent between now
and 2035. By contrast, coal-½red electric-
ity generation is expected to grow at an
average rate of 1.9 percent per year over
the same period.15

Recent growth rates are stunning: over
the ½ve-year period from 2005 through
2009, global renewable energy capacity
grew at rates of 10 to 60 percent annually 
for many technologies.16 While percent-
age increases of this magnitude cannot
be expected to last as the base for renew-
ables expands, the forward momentum 
is undeniable. In 2008, for the ½rst time,
more renewable energy than convention-
al power capacity was added in both the
European Union and the United States.17

In 2010, renewables represented half 
of all newly installed electric capacity
worldwide.18

To further put these numbers in con-
text, total global power-generating capac-
ity in 2011 was estimated at 5,360 gw. By
the end of 2011, total renewable power
capacity worldwide exceeded 1,360 gw,
up 8 percent over 2010. Renewables thus
comprised more than 25 percent of total
global power-generating capacity and
supplied an estimated 20.3 percent of
global electricity. Non-hydroelectric re-
newables exceeded 390 gw, a 24 percent
capacity increase over 2010. Total
installed capacity of non-hydroelectric
renewables in 2010 was around 312 gw,
just over 6 percent of the global total. Note
that intermittent renewable energy
resources are available only a fraction of
the time, so nameplate capacity does not
directly translate into energy. Energy pro-
duction is equal to nameplate capacity
multiplied by the capacity factor (the
fraction of time plants or installations are
in operation), which can vary from about
15 percent for solar photovoltaics in cli-
mates that do not receive much sunlight
to up to 40 percent for offshore wind
installations. Nevertheless, by 2035, re-
newables are expected to account for
about a third of global installed capacity
and to generate between 15 and 23 percent
of the world’s electricity.19

Some renewable energy technologies
are close to commercially competitive,
including wind. Solar photovoltaics (pv)
are approaching the mark, while concen-
trated solar thermal power has some dis-
tance yet to go. Aggressive deployment of
renewables can make a big difference rel-
ative to the carbon budget. Nevertheless,
with the possible exception of onshore
wind, these technologies still need to make
substantial progress along the learning
curve–dropping in price as their volume
grows–to compete with incumbent fossil
fuel sources. 

Evolving technologies, including most
renewable applications, have a high learn-
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ing rate compared to mature technologies
like coal.20 Solar pv has traditionally ex-
hibited an average learning rate of 20 per-
cent, meaning that price drops by a ½fth
for every doubling of production.21 If
these rates persist, a few more doublings
of production capacity could result in cost
parity with fossil sources. Industry insid-
ers suggest that solar pv is on track to be
the cheapest energy source for many parts
of the world by the end of the decade.22

There are two caveats, however: solar
learning curves may be flattening23; and
the cost of solar cells is only half of the
equation. The enclosure, glass cover,
mounting racks, junction boxes, and
wiring–together called the balance of sys-
tem–are now about half the cost of solar
electricity, and their price decline may be
slower.24

Nevertheless, both wind and solar prices
continue to decline. The solar industry has
achieved manufacturing economies of
scale, and more ef½cient cells are being
developed. The cost of wind energy is
already close to competitive with new 
gas and coal. According to ren21’s 2011
Global Status Report, the cost per kilowatt-
hour for onshore wind ranges from 5¢ to
9¢, for an average of 7¢/kWh.25

To examine the effect that an accelerat-
ed deployment of renewable technolo-
gies could have on the carbon budget, we
modeled the following two scenarios: 

• Renewables (ren). The cost of energy
from new renewables was assumed to
be 60 percent below its 2012 price,
beginning in the same year. Such a dra-
matic decrease in price might come
from an imagined technological break-
through in R&D.26

• Renewables Plus (ren+). A 70 percent
drop in cost was assumed beginning in
2012. We also added a 2 percent per year
reduction in the barriers to electrifying
the transport sector.27

Figure 3 compares emissions in these
test cases to bau, revealing a substantial
divergence–at least in annual emissions.
In 2050, annual ren emissions are 20 per-
cent below bau emissions; ren+ emis-
sions are 31 percent lower. The difference
is less striking in the cumulative emis-
sions view, where ren+ crosses the tril-
lionth ton less than a decade after bau. 

This delay is slight because the dis-
placement of fossil fuels by renewables is
minimal in the near decades. Scaling
renewable technologies to meet global
energy needs remains a challenge even
when prices become competitive. When
renewables enter the market at or below
the price of new coal (as they do in both
test cases), demand for coal declines only
marginally–a result of the embedded
infrastructure of fossil-fuel generating
sources. Turning over the capital stock of
coal plants takes time. Moreover, cost is
not the only factor determining penetra-
tion rates of a young technology. Scal-
ability and regional differences in wind
and solar resources, as well as intermit-
tency and the corresponding ½rming
requirements,28 also play a role.

What other technology breakthroughs
might play a signi½cant role in the energy
transition ahead? Carbon capture and
storage (ccs) ½gures prominently in
many mitigation scenarios as virtually a
sine qua non of remaining on a 450 ppm
pathway. However, progress has been slow
in building the large-scale and capital-
intensive demonstration projects needed
to test the viability of the technology over
its life cycle: that is, from combustion of
the fossil fuel to the capture and storage
of related emissions. In its 2012 report to
the Clean Energy Ministerial, the iea

notes that we can expect to see about ten
ccs plants operating by the middle of
this decade. But we will need about 110
more by 2020, the agency argues, in order
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Figure 3
Renewable Energy Scenarios, 2010–2100

Cumulative Carbon Emissions

Annual Carbon Emissions
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to keep global temperature rise below 2
degrees Celsius.29

Public ½nancing for ccs peaked in 2008
and 2009, when the technology received a
boost as part of broader economic stimu-
lus programs.30 Nevertheless, much of the
promised funding remains unallocated.
As of 2012, only 60 percent of the approx-
imately $21.4 billion available to support
large-scale demonstration projects had
been assigned to speci½c ventures.31

Ongoing upheaval in the global market
will undoubtedly continue to squeeze
ccs budgets. Moreover, ccs is likely to
remain underfunded in the absence of
strong and reliable policy signals, such as
a price on carbon. 

ccs provides just one example of the
potential challenges facing any new
breakthrough technology. Our decades-
long experience with solar pv further
con½rms that, even after invention and
initial deployment, a technology often
needs additional help to progress along
its learning curve. Despite being com-
mercialized in the 1970s, and notwith-
standing its recent and striking price
reductions, solar pv has yet to achieve
global penetration rates of 1 percent. Cer-
tainly, a few more doublings of produc-
tion capacity and concomitant price
reductions could revolutionize the out-
look for solar, but the sheer scale of the
transition means that this will take time. 

Our discussion is by no means a con-
demnation of renewables and other new
energy-supply innovations. The above
examples merely underscore the intense
pressure that innovations face as they try
to gain a foothold in the market. In the
case of renewables, this challenge is
largely attributable to the fact that cheap
fossil fuels are an entrenched and ubiqui-
tous part of our energy economy. Further
complicating matters is the uneven play-
ing ½eld that results from the failure to

price externalities associated with fossil
fuels, including impacts on air quality,
human health, and national security,
among many other factors. Additionally,
renewables are likely to have higher capi-
tal costs (but lower operating costs) than
conventional resources, which cost less up
front but require lifetime fuel purchase.
Higher capital costs can limit ½nancing
for renewables. Financing also comprises
the biggest fraction of the levelized cost of
renewable energy, further undercutting
competiveness with established fossil
sources. Any other new zero-carbon tech-
nology will likely face similar hurdles.

But let us adopt a techno-optimist’s
view and assume that a new energy game-
changer arrives on the scene. This path-
breaking technology circumvents the prob-
lems noted above because innovations
have resulted in an energy source so cheap
that the new technology enters the market
at half the price of coal. It is deployable at
scale and available for mass penetration
around the globe. What is the impact of
this game-changer on the carbon budget? 

Speci½cally, we de½ned our New Tech-
nology (nt) scenario by the following
assumptions:

• R&D efforts produce a zero-carbon pro-
totype in 2020; 

• Global deployment takes twelve years;
and 

• The technology enters the market at half
the price of new coal. 

The nt case assumes that a new zero-
carbon energy source, not yet conceived,
achieves mass global penetration slightly
more than twenty years from now. This
ambitious scenario exceeds by a wide mar-
gin the commercialization trajectories of
any large-scale energy technology existing
today. For instance, in the renewables
sector, wind power has only recently
achieved signi½cant rates of penetration
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in some countries (Denmark, Spain, and
Germany) where it has received heavy
public support–more than a half-century
after the ½rst grid-connected wind turbine
was manufactured in 1951. Nevertheless,
startling innovations are possible. 

The nt scenario circumvents the most
obvious hurdle to competitiveness–
namely, cost–by stipulating that the new
zero-carbon energy source enters the
market at half the price of coal. While
this strains credulity, it could be possible
if a carbon price were imposed or if
deployment of the new technology were
declared a national or international prior-
ity. Again, our intent was to test assump-
tions at the outer bounds of technical or
political feasibility to gauge the impact
on the carbon budget. We found that the
carbon emissions accumulated to date
renders the budget relatively insensitive
to even very aggressive assumptions on
an energy game-changer. 

Figure 4 shows that annual nt emis-
sions are 11 percent below bau emissions
in 2050, but crossing the trillionth ton is
delayed by less than a year (though the
test case diverges more substantially from
bau as time passes beyond the trillionth
ton). At ½rst glance, the meager bene½ts
of the nt scenario are hard to understand.
The assumptions are so radical that one
would expect the needle to move much
more sharply. In the long run, if a new
technology is cheaper, we would expect it
to take over, partly because of the learning
curve dynamics, which amplify any ini-
tial cost advantage (cheaper equals more
sales, which leads to more learning and
continued price reductions). However,
this cycle is tempered by capital turnover;
even if the new technology is dominant
as a share of investment in new capacity,
replacing existing capital and achieving
dominance overall takes a long time. 

For En-roads simulations, the frac-
tional investment in various types of

energy supply over the course of each
time period is determined by the relative
attractiveness of each supply type. Rela-
tive attractiveness is a function of the
cost of each technology, which in turn is
influenced by learning, cost of nonrenew-
able resources, suitability of remaining
sites for renewable energy installations,
and capacity for construction of new 
supply.32 As a result of this structure,
market shares of a new technology may
not correspond in the short term with
what one might expect on the basis of
cost alone.

These assumptions about the energy
system imply that coal, oil, and gas will
continue to be burned for energy through-
out the century. Even in scenarios where
renewable energy or new technologies
grow signi½cantly, drop in price, and
dominate the market, fossil fuel energy
continues to be inexpensive (recall that
there is no price on carbon) and suf½cient-
ly available to attract investment and use.
Although reliance on fossil fuels is much
less than in the bau scenario, it is still
enough to prolong the increase of cumu-
lative emissions. 

The En-roads simulations discussed
in this essay indicate the value of a diver-
si½ed portfolio of emissions-reducing
tools. No one tool suf½ces. Ef½ciency
alone, while curtailing demand, cannot
stand in for a low-carbon energy source.
Renewables are not powerful enough to
displace coal in the near term; we need
sustained investments and ef½ciency
measures to give them time to descend
the learning curve. A new technology
breakthrough, though a crucial long-
term solution for global energy needs,
requires several decades before it can
achieve suf½cient market penetration to
make a difference. 

Estimated annual emissions do drop
sharply in the individual scenarios. For ex-
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Figure 4
New Technology Scenario, 2010–2100

Cumulative Carbon Emissions

Annual Carbon Emissions
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ample, in 2050, ee+ emissions are 47 per-
cent below bau, and ren+ emissions are
31 percent below. Nevertheless, the impact
on the cumulative budget is limited. The
aggressive renewables test case buys only
a few additional years before we cross the
trillion-ton line. The nt scenario is also
marginal, buying less than ½ve years
beyond bau. The impact discrepancy
between annual and cumulative emissions
underscores the inadequacy of national
emissions reduction schemes based on
the “targets and timetables” approach.
For instance, the United States has com-
mitted to 80 percent reductions relative
to baseline emissions in 2050. However,
unless this target is placed in the context
of cumulative emissions, the numbers are
fairly meaningless: “[D]espite making
reference to being guided by the ‘science’,
the [Copenhagen] Accord makes no
mention of cumulative emissions as the
scienti½cally credible framing of mitiga-
tion. [Thus] the Accord still falls short of
acknowledging what the science makes
absolutely clear–it is cumulative emis-
sions that matter.”33 In other words, we
cannot emit willy-nilly until 2049 and then
slash emissions abruptly in 2050 and
expect to be ½ne. Only cumulative emis-
sions matter.

Nevertheless, we can delay emission of
the trillionth ton much further by deploy-
ing a portfolio of actions. For instance, a
serious ramp-up of renewables capacity
coupled with an aggressive ef½ciency
portfolio buys more than twenty years
relative to bau. Annual emissions in 2050
are 57 percent less than bau, and the tril-
lionth ton is not emitted until sometime
around 2073. Combining the three most
aggressive scenarios–ee+, ren+, and
nt–is marginally better (see Figure 5).34

The combined scenario delays crossing
the trillion-ton line by about a quarter-
century–a good start, but not suf½cient.
Land-use changes are also an essential

piece of the puzzle. Terrestrial sinks, for-
ests, and plants have sequestered about a
quarter of human-driven carbon emis-
sions over time.35 Thus, deforestation in
the Amazon, Indonesia, and the Congo
Basin is a major threat, converting a mas-
sive carbon-storage sink into a massive
carbon source. The draining and burning
of peat bogs is another major global
source of CO2 emissions–indeed, the
third largest after burning fossil fuels 
and deforestation. Unsustainable farming
practices are also to blame. For instance,
the carbon-rich grasslands and forests in
temperate zones have been replaced by
crops with a much lower capacity to
sequester carbon. Aggressive policies are
needed to arrest these developments and
further forestall the trillionth ton. 

The last missing piece is the interaction
of economic growth and coal. The sce-
narios modeled in this essay reflect this
relationship in the second half of the cen-
tury, when carbon emissions begin to
grow after a period of steady decline. In
the ee+ and ren+ scenarios, for example,
annual emissions decline through the
middle of the century only to rise again.
Why does this happen? Quite simply, the
clean energy supply is overwhelmed by
growth, absent additional downward
pressure on coal. If gdp continues to grow
by 2 to 3 percent a year and coal remains
cheap, ef½ciency gains and renewables
will not keep pace with demand.36 A price
on carbon or an international deal on
emissions reductions could alter this pic-
ture. Though policy options to achieve an
ordered reduction of coal are manifold, we
use the proxy of a carbon price in our ½nal
scenario below. 

Our ½nal scenario combines ee+, ren+,
and nt with two new actions or policies:
a CO2 price of $35 per ton starting in 2025,
and a 50 percent reduction in emissions
from land-use sectors and other more
short-lived greenhouse gases.
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Figure 5
Combination Scenarios, 2010–2100

Cumulative Carbon Emissions

Annual Carbon Emissions

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/DAED_a_00182 by guest on 20 April 2024



22

A Trillion
Tons

Dædalus, the Journal of the American Academy of Arts & Sciences

As Figure 5 shows, this scenario (“the
Suite”) holds cumulative emissions below
the trillionth ton throughout this century.
In 2050, annual emissions are 67 percent
below bau. Speci½c components of the
Suite could be adjusted, of course. Use of
nuclear power (in place of coal) could
reduce emissions associated with base-
load electric power generation, and recent
changes in the availability of natural gas
could also be explored. A more stringent
land-use policy might be traded for a car-
bon price. This thought experiment sim-
ply highlights that there is no single solu-
tion: multiple measures are needed to
keep humanity on a reasonable climate
trajectory.

The En-roads modeling exercise shows
how rapid deployment of ef½ciency im-
provements, renewables, and new tech-
nologies might impact the carbon budget
over this century. Speci½cally, it con½rms
that each component is necessary and
none is suf½cient alone. Combined with a
carbon price and effective land-use poli-
cy, these three tools offer a challenging
but credible path that stays within the

carbon budget. We do not have time to
waste if we are to avoid dangerous, irre-
versible climate changes for which mod-
ern civilization is ill-suited to adapt.
Indeed, the iea warns that we have ½ve
years to get off the bau path. After that
point, the energy infrastructure we build
will start to lock in emissions-generating
infrastructure that will push global
warming beyond 2 degrees Celsius. 

Starting today, we can use existing
tools to begin a steady decline in emis-
sions at low cost. In coming years, renew-
able power will grow cheaper, while fossil
fuel prices will adjust to future supplies
and competition from other resources. A
breakthrough innovation may well revo-
lutionize the energy sector in ways we can
now only dream about. Programs and
policies to foster advances can be pursued
on a national, state, or local level; policy-
makers and businesses at every level are
empowered to take action now. The sce-
narios examined here suggest that with
an aggressive and sustained effort, we can
push back the timetable for expending our
carbon budget and thus sharply reduce
the risks of surpassing the trillionth ton.
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