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The paper defines weighted head transducers, finite-state machines that perform middle-out string
transduction. These transducers are strictly more expressive than the special case of standard left-
to-right finite-state transducers. Dependency transduction models are then defined as collections
of weighted head transducers that are applied hierarchically. A dynamic programming search
algorithm is described for finding the optimal transduction of an input string with respect to a
dependency transduction model. A method for automatically training a dependency transduc-
tion model from a set of input-output example strings is presented. The method first searches
for hierarchical alignments of the training examples guided by correlation statistics, and then
constructs the transitions of head transducers that are consistent with these alignments. Experi-
mental results are given for applying the training method to translation from English to Spanish
and Japanese.

1. Introduction

We will define a dependency transduction model in terms of a collection of weighted
head transducers. Each head transducer is a finite-state machine that differs from
“standard” finite-state transducers in that, instead of consuming the input string left
to right, it consumes it “middle out” from a symbol in the string. Similarly, the output
of a head transducer is built up middle out at positions relative to a symbol in the
output string. The resulting finite-state machines are more expressive than standard
left-to-right transducers. In particular, they allow long-distance movement with fewer
states than a traditional finite-state transducer, a useful property for the translation task
to which we apply them in this paper. (In fact, finite-state head transducers are capable
of unbounded movement with a finite number of states.) In Section 2, we introduce
head transducers and explain how input-output positions on state transitions result
in middle-out transduction.

When applied to the problem of translation, the head transducers forming the de-
pendency transduction model operate on input and output strings that are sequences
of dependents of corresponding headwords in the source and target languages. The
dependency transduction model produces synchronized dependency trees in which
each local tree is produced by a head transducer. In other words, the dependency
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model applies the head transducers recursively, imposing a recursive decomposition
of the source and target strings. A dynamic programming search algorithm finds op-
timal (lowest total weight) derivations of target strings from input strings or word
lattices produced by a speech recognizer. Section 3 defines dependency transduction
models and describes the search algorithm.

We construct the dependency transduction models for translation automatically
from a set of unannotated examples, each example comprising a source string and a
corresponding target string. The recursive decomposition of the training examples
results from an algorithm for computing hierarchical alignments of the examples,
described in Section 4.2. This alignment algorithm uses dynamic programming search
guided by source-target word correlation statistics as described in Section 4.1.

Having constructed a hierarchical alignment for the training examples, a set of
head transducer transitions are constructed from each example as described in Sec-
tion 4.3. Finally, the dependency transduction model is constructed by aggregating the
resulting head transducers and assigning transition weights, which are log probabili-
ties computed from the training counts by simple maximum likelihood estimation.

We have applied this method of training statistical dependency transduction mod-
els in experiments on English-to-Spanish and English-to-Japanese translations of tran-
scribed spoken utterances. The results of these experiments are described in Section 5;
our concluding remarks are in Section 6.

2. Head Transducers

2.1 Weighted Finite-State Head Transducers
In this section we describe the basic structure and operation of a weighted head trans-
ducer. In some respects, this description is simpler than earlier presentations (e.g.,
Alshawi 1996); for example, here final states are simply a subset of the transducer
states whereas in other work we have described the more general case in which final
states are specified by a probability distribution. The simplified description is adequate
for the purposes of this paper.

Formally, a weighted head transducer is a 5-tuple: an alphabet W of input symbols;
an alphabet V of output symbols; a finite set Q of states q0, : : : , qs; a set of final states
F � Q; and a finite set T of state transitions. A transition from state q to state q0 has
the form

hq, q0, w, v,�, �, ci

where w is a member of W or is the empty string �; v is a member of V or �; the integer
� is the input position; the integer � is the output position; and the real number c is
the weight or cost of the transition. A transition in which � = 0 and � = 0 is called a
head transition.

The interpretation of q, q0, w, and v in transitions is similar to left-to-right transduc-
ers, i.e., in transitioning from state q to state q0, the transducer “reads” input symbol
w and “writes” output symbol v, and as usual if w (or v) is � then no read (respec-
tively write) takes place for the transition. The difference lies in the interpretation of
the read position � and the write position �. To interpret the transition positions as
transducer actions, we consider notional input and output tapes divided into squares.
On such a tape, one square is numbered 0, and the other squares are numbered 1, 2, : : :
rightwards from square 0, and �1,�2, : : : leftwards from square 0 (Figure 1).

A transition with input position � and output position � is interpreted as reading
w from square � on the input tape and writing v to square � of the output tape; if
square � is already occupied, then v is written to the next empty square to the left of
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Figure 1
Transition symbols and positions.

� if � < 0, or to the right of � if � � 0, and similarly, if input was already read from
position �, w is taken from the next unread square to the left of � if � < 0 or to the
right of � if � � 0.

The operation of a head transducer is nondeterministic. It starts by taking a head
transition

hq, q0, w0, v0, 0, 0, ci

where w0 is one of the symbols (not necessarily the leftmost) in the input string. (The
valid initial states are therefore implicitly defined as those with an outgoing head
transition.) w0 is considered to be at square 0 of the input tape and v0 is output at
square 0 of the output tape. Further state transitions may then be taken until a final
state in F is reached. For a derivation to be valid, it must read each symbol in the
input string exactly once. At the end of a derivation, the output string is formed by
taking the sequence of symbols on the target tape, ignoring any empty squares on this
tape.

The cost of a derivation of an input string to an output string by a weighted
head transducer is the sum of the costs of transitions taken in the derivation. We can
now define the string-to-string transduction function for a head transducer to be the
function that maps an input string to the output string produced by the lowest-cost
valid derivation taken over all initial states and initial symbols. (Formally, the function
is partial in that it is not defined on an input when there are no derivations or when
there are multiple outputs with the same minimal cost.)

In the transducers produced by the training method described in this paper, the
source and target positions are in the set f�1, 0, 1g, though we have also used hand-
coded transducers (Alshawi and Xia 1997) and automatically trained transducers (Al-
shawi and Douglas 2000) with a larger range of positions.

2.2 Relationship to Standard FSTs
The operation of a traditional left-to-right transducer can be simulated by a head
transducer by starting at the leftmost input symbol and setting the positions of the
first transition taken to � = 0 and � = 0, and the positions for subsequent transitions
to � = 1 and � = 1. However, we can illustrate the fact that head transducers are more

47

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089120100561629 by guest on 20 April 2024



Computational Linguistics Volume 26, Number 1

Figure 2
Head transducer to reverse an input string of arbitrary length in the alphabet fa, bg.

expressive than left-to-right transducers by the case of a finite-state head transducer
that reverses a string of arbitrary length. (This cannot be performed by a traditional
transducer with a finite number of states.)

For example, the head transducer described below (and shown in Figure 2) with
input alphabet fa, bg will reverse an input string of arbitrary length in that alphabet.
The states of the example transducer are Q = fq1, q2g and F = fq2g, and it has the
following transitions (costs are ignored here):

hq1, q2, a, a, 0, 0i
hq1, q2, b, b, 0, 0i
hq2, q2, a, a,�1, 1i
hq2, q2, b, b,�1, 1i

The only possible complete derivations of the transducer read the input string right
to left, but write it left to right, thus reversing the string.

Another similar example is using a finite-state head transducer to convert a palin-
drome of arbitrary length into one of its component halves. This clearly requires the
use of an empty string on some of the output transitions.

3. Dependency Transduction Models

3.1 Dependency Transduction using Head Transducers
In this section we describe dependency transduction models, which can be used for
machine translation and other transduction tasks. These models consist of a collection
of head transducers that are applied hierarchically. Applying the machines hierarchi-
cally means that a nonhead transition is interpreted not simply as reading an input-
output pair (w, v), but instead as reading and writing a pair of strings headed by (w, v)
according to the derivation of a subnetwork.

For example, the head transducer shown in Figure 3 can be applied recursively in
order to convert an arithmetic expression from infix to prefix (Polish) notation (as noted
by Lewis and Stearns [1968], this transduction cannot be performed by a pushdown
transducer).

In the case of machine translation, the transducers derive pairs of dependency
trees, a source language dependency tree and a target dependency tree. A dependency
tree for a sentence, in the sense of dependency grammar (for example Hays [1964] and
Hudson [1984]), is a tree in which the words of the sentence appear as nodes (we do
not have terminal symbols of the kind used in phrase structure grammar). In such a
tree, the parent of a node is its head and the child of a node is the node’s dependent.

The source and target dependency trees derived by a dependency transduction
model are ordered, i.e., there is an ordering on the nodes of each local tree. This
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Figure 3
Dependency transduction network mapping bracketed arithmetic expressions from infix to
prefix notation.

Figure 4
Synchronized dependency trees derived for transducing I want to make a collect call into quiero
hacer una llamada de cobrar.

means, in particular, that the target sentence can be constructed directly by a simple
recursive traversal of the target dependency tree. Each pair of source and target trees
generated is synchronized in the sense to be formalized in Section 4.2. An example is
given in Figure 4.

Head transducers and dependency transduction models are thus related as fol-
lows: Each pair of local trees produced by a dependency transduction derivation is the
result of a head transducer derivation. Specifically, the input to such a head transducer
is the string corresponding to the flattened local source dependency tree. Similarly, the
output of the head transducer derivation is the string corresponding to the flattened
local target dependency tree. In other words, the head transducer is used to convert
a sequence consisting of a headword w and its left and right dependent words to a
sequence consisting of a target word v and its left and right dependent words (Fig-
ure 5). Since the empty string may appear in a transition in place of a source or target
symbol, the number of source and target dependents can be different.

The cost of a derivation produced by a dependency transduction model is the
sum of all the weights of the head transducer derivations involved. When applying a
dependency transduction model to language translation, we choose the target string
obtained by flattening the target tree of the lowest-cost dependency derivation that
also generates the source string.

We have not yet indicated what weights to use for head transducer transitions.
The definition of head transducers as such does not constrain these. However, for a
dependency transduction model to be a statistical model for generating pairs of strings,
we assign transition weights that are derived from conditional probabilities. Several
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Figure 5
Head transducer converts the sequences of left and right dependents hw1 : : : wk�1i and
hwk+1 : : : wni of w into left and right dependents hv1 : : : vj�1i and hvj+1 : : : vpi of v.

probabilistic parameterizations can be used for this purpose including the following
for a transition with headwords w and v and dependent words w0 and v0:

P(q0, w0, v0,�, �jw, v, q):

Here q and q0 are the from-state and to-state for the transition and � and � are the
source and target positions, as before. We also need parameters P(q0, q1jw, v) for the
probability of choosing a head transition

hq0, q1, w, v, 0, 0i

given this pair of headwords. To start the derivation, we need parameters
P(roots(w0, v0)) for the probability of choosing w0,v0 as the root nodes of the two
trees.

These model parameters can be used to generate pairs of synchronized depen-
dency trees starting with the topmost nodes of the two trees and proceeding recur-
sively to the leaves. The probability of such a derivation can be expressed as:

P(roots(w0, v0))P(Dw0,v0)

where P(Dw,v) is the probability of a subderivation headed by w and v, that is

P(Dw,v) = P(q0, q1jw, v)
Y

1�i�n

P(qi+1, wi, vi,�i, �ijw, v, qi)P(Dwi,vi)

for a derivation in which the dependents of w and v are generated by n transitions.

3.2 Transduction Algorithm
To carry out translation with a dependency transduction model, we apply a dynamic
programming search to find the optimal derivation. This algorithm can take as input
either word strings, or word lattices produced by a speech recognizer. The algorithm
is similar to those for context-free parsing such as chart parsing (Earley 1970) and
the CKY algorithm (Younger 1967). Since word string input is a special case of word
lattice input, we need only describe the case of lattices.

We now present a sketch of the transduction algorithm. The algorithm works
bottom-up, maintaining a set of configurations. A configuration has the form

[n1, n2, w, v, q, c, t]

corresponding to a bottom-up partial derivation currently in state q covering an input
sequence between nodes n1 and n2 of the input lattice. w and v are the topmost
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nodes in the source and target derivation trees. Only the target tree t is stored in the
configuration.

The algorithm first initializes configurations for the input words, and then per-
forms transitions and optimizations to develop the set of configurations bottom-up:

� Initialization: For each word edge between nodes n and n0 in the lattice
with source word w0, an initial configuration is constructed for any head
transition of the form

hq, q0, w0, v0, 0, 0, ci

Such an initial configuration has the form:

[n, n0, w0, v0, q0, c, v0]

� Transition: We show the case of a transition in which a new configuration
results from consuming a source dependent w1 to the left of a headword
w and adding the corresponding target dependent v1 to the right of the
target head v. Other cases are similar. The transition applied is:

hq, q0, w1, v1,�1, 1, c0i

It is applicable when there are the following head and dependent
configurations:

[n2, n3, w, v, q, c, t]

[n1, n2, w1, v1, qf , c1, t1]

where the dependent configuration is in a final state qf . The result of
applying the transition is to add the following to the set of
configurations:

[n1, n3, w, v, q0, c + c1 + c0, t0]

where t0 is the target dependency tree formed by adding t1 as the
rightmost dependent of t.

� Optimization: We also require a dynamic programming condition to
remove suboptimal (sub)derivations. Whenever there are two
configurations

[n, n0, w, v, q, c1, t1]

[n, n0, w, v, q, c2, t2]

and c2 > c1, the second configuration is removed from the set of
configurations.

If, after all applicable transitions have been taken, there are configurations span-
ning the entire input lattice, then the one with the lowest cost is the optimal derivation.
When there are no such configurations, we take a pragmatic approach in the trans-
lation application and simply concatenate the lowest costing of the minimal length
sequences of partial derivations that span the entire lattice. A Viterbi-like search of
the graph formed by configurations is used to find the optimal sequence of deriva-
tions. One of the advantages of middle-out transduction is that robustness is improved
through such use of partial derivations when no complete derivations are available.
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4. Training Method

Our training method for head transducer models only requires a set of training exam-
ples. Each example, or bitext, consists of a source language string paired with a target
language string. In our experiments, the bitexts are transcriptions of spoken English
utterances paired with their translations into Spanish or Japanese.

It is worth emphasizing that we do not necessarily expect the dependency repre-
sentations produced by the training method to be traditional dependency structures
for the two languages. Instead, the aim is to produce bilingual (i.e., synchronized, see
below) dependency representations that are appropriate to performing the translation
task for a specific language pair or specific bilingual corpus. For example, headwords
in both languages are chosen to force a synchronized alignment (for better or worse)
in order to simplify cases involving so-called head-switching. This contrasts with one
of the traditional approaches (e.g., Dorr 1994; Watanabe 1995) to posing the transla-
tion problem, i.e., the approach in which translation problems are seen in terms of
bridging the gap between the most natural monolingual representations underlying
the sentences of each language.

The training method has four stages: (i) Compute co-occurrence statistics from the
training data. (ii) Search for an optimal synchronized hierarchical alignment for each
bitext. (iii) Construct a set of head transducers that can generate these alignments with
transition weights derived from maximum likelihood estimation.

4.1 Computing Pairing Costs
For each source word w in the data set, assign a cost, the translation pairing cost
c(w, v) for all possible translations v into the target language. These translations of the
source word may be zero, one, or several target language words (see Section 4.4 for
discussion of the multiword case). The assignment of translation pairing costs (effec-
tively a statistical bilingual dictionary) may be done using various statistical measures.
For this purpose, a suitable statistical function needs to indicate the strength of co-
occurrence correlation between source and target words, which we assume is indicative
of carrying the same semantic content. Our preferred choice of statistical measure for
assigning the costs is the � correlation measure (Gale and Church 1991). We apply
this statistic to co-occurrence of the source word with all its possible translations in
the data set examples. We have found that, at least for our data, this measure leads to
better performance than the use of the log probabilities of target words given source
words (cf. Brown et al. 1993).

In addition to the correlation measure, the cost for a pairing includes a distance
measure component that penalizes pairings proportionately to the difference between
the (normalized) positions of the source and target words in their respective sentences.

4.2 Computing Hierarchical Alignments
As noted earlier, dependency transduction models are generative probabilistic models;
each derivation generates a pair of dependency trees. Such a pair can be represented
as a synchronized hierarchical alignment of two strings. A hierarchical alignment
consists of four functions. The first two functions are an alignment mapping f from
source words w to target words f (w) (which may be the empty string �), and an
inverse alignment mapping from target words v to source words f 0(v). The inverse
mapping is needed to handle mapping of target words to �; it coincides with f for pairs
without source �. The other two functions are a source head-map g mapping source
dependent words w to their heads g(w) in the source string, and a target head-map
h mapping target dependent words v to their headwords h(v) in the target string. An
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Figure 6
A hierarchical alignment: alignment mappings f and f 0, and head-maps g and h.

example hierarchical alignment is shown in Figure 6 (f and f 0 are shown separately
for clarity).

A hierarchical alignment is synchronized (i.e., it corresponds to synchronized de-
pendency trees) if these conditions hold:

Nonoverlap: If w1 6= w2, then f (w1) 6= f (w2), and similarly, if v1 6= v2, then f 0(v1) 6=
f 0(v2).

Synchronization: if f (w) = v and v 6= �, then f (g(w)) = h(v), and f 0(v) = w.
Similarly, if f 0(v) = w and w 6= �, then f 0(h(v)) = g(w), and f (w) = v.

Phrase contiguity: The image under f of the maximal substring dominated by a
headword w is a contiguous segment of the target string.

(Here w and v refer to word tokens not symbols (types). We hope that the context of
discussion will make the type-token distinction clear in the rest of this article.) The
hierarchical alignment in Figure 6 is synchronized.

Of course, translations of phrases are not always transparently related by a hier-
archical alignment. In cases where the mapping between a source and target phrase is
unclear (for example, one of the phrases might be an idiom), then the most reasonable
choice of hierarchical alignment may be for f and f 0 to link the heads of the phrases
only, all the other words being mapped to �, with no constraints on the monolingual
head mappings h and g. (This is the approach we take to compound lexical pairings,
discussed in Section 4.4.)

In the hierarchical alignments produced by the training method described here,
the source and target strings of a bitext are decomposed into three aligned regions,
as shown in Figure 7: a head region consisting of headword w in the source and its
corresponding target f (w) in the target string, a left substring region consisting of the
source substring to the left of w and its projection under f on the target string, and
a right substring region consisting of the source substring to the right of w and its
projection under f on the target string. The decomposition is recursive in that the left
substring region is decomposed around a left headword wl, and the right substring
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Figure 7
Decomposing source and target strings around heads w and f (w).

region is decomposed around a right headword wr. This process of decomposition
continues for each left and right substring until it only contains a single word.

For each bitext there are, in general, multiple such recursive decompositions that
satisfy the synchronization constraints for hierarchical alignments. We wish to find
such an alignment that respects the co-occurrence statistics of bitexts as well as the
phrasal structure implicit in the source and target strings. For this purpose we define
a cost function on hierarchical alignments. The cost function is the sum of three terms.
The first term is the total of all the translation pairing costs c(w, f (w)) of each source
word w and its translation f (w) in the alignment; the second term is proportional to
the distance in the source string between dependents wd and their heads g(wd); and the
third term is proportional to the distance in the target string between target dependent
words vd and their heads h(vd).

The hierarchical alignment that minimizes this cost function is computed using
a dynamic programming procedure. In this procedure, the pairing costs are first re-
trieved for each possible source-target pair allowed by the example. Adjacent source
substrings are then combined to determine the lowest-cost subalignments for suc-
cessively larger substrings of the bitext satisfying the constraints stated above. The
successively larger substrings eventually span the entire source string, yielding the
optimal hierarchical alignment for the bitext. This procedure has O(n6) complexity
in the number of words in the source (or target) sentence. In Alshawi and Douglas
(2000) we describe a version of the alignment algorithm in which heads may have
an arbitrary number of dependents, and in which the hierarchical alignments for the
training corpus are refined by iterative reestimation.

4.3 Constructing Transducers
Building a head transducer involves creating appropriate head transducer states and
tracing hypothesized head transducer transitions between them that are consistent
with the hierarchical alignment of a bitext.

The main transitions that are traced in our construction are those that map heads,
wl and wr, of the right and left dependent phrases of w to their translations as indi-
cated by the alignment function f in the hierarchical alignment. The positions of the
dependents in the target string are computed by comparing the positions of f (wl) and
f (wr) to the position of v = f (w).

In order to generalize from instances in the training data, some model states aris-
ing from different training instances are shared. In particular, in the construction de-
scribed here, for a given pair (w, v) there is only one final state. (We have also tried
using automatic word-clustering techniques to merge states further, but for the lim-
ited domain corpora we have used so far, the results are inconclusive.) To specify
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Figure 8
States and transitions constructed for the “swapping” decomposition shown in Figure 7.

the sharing of states we make use of a one-to-one state-naming function � from se-
quences of strings to transducer states. The same state-naming function is used for
all examples in the data set, ensuring that the transducer fragments recorded for
the entire data set will form a complete collection of head transducer transition net-
works.

Figure 7 shows a decomposition in which w has a dependent to either side, v
has both dependents to the right, and the alignment is “swapping” (f (wl) is to the
right of f (wr)). The construction for this decomposition case is illustrated in Figure 8
as part of a finite-state transition diagram, and described in more detail below. (The
other transition arrows shown in the diagram will arise from other bitext alignments
containing (w, f (w)) pairings.) Other cases covered by our algorithm (e.g., a single left
source dependent but no right source dependent, or target dependents on either side
of the target head) are simple variants.

The detailed construction is as follows:

1. Construct a transition from s1 = �(initial) to s2 = �(w, f (w), head) mapping
the source headword w to the target head f (w) at position 0 in source
and target. (In our training construction there is only one initial state s1.)

2. Since the target dependent f (wr) is to the left of target dependent f (wl)
(and we are restricting positions to f�1, 0,+1g) the wr transition is
constructed first in order that the target dependent nearest the head is
output first.
Construct a transition from s2 to s3 = �(w, f (w), swapping, wr, f (wr)
mapping the source dependent wr at position +1 to the target dependent
f (wr) at position +1.

3. Construct a transition from s3 to s4 = �(w, f (w), final) mapping the source
dependent wl at position -1 to the target dependent f (wl) at position +1.

If instead the alignment had been as in Figure 9, in which the source dependents
are mapped to target dependents in a parallel rather than swapping configuration
(the configuration of sin escalas and Boston around flights:los vuelos in Figure 6), the
construction is the same, except for the following differences:

1. Since the target dependent f (wl) is to the left of target dependent f (wr),
the wl transition is constructed first in order that the target dependent
nearest the head is output first.

2. The source and target positions are as shown in Figure 10. Instead of
state s3, we use a different state s5 = �(w, f (w), parallel, wl, f (wl)).
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Figure 9
Decomposing source and target strings around heads w and f (w)—“parallel”.

Figure 10
States and transitions constructed for the “parallel” decomposition shown in Figure 9.

Other states are the same as for the first case. The resulting states and transitions are
shown in Figure 10.

After the construction described above is applied to the entire set of aligned bi-
texts in the training set, the counts for transitions are treated as event observation
counts of a statistical dependency transduction model with the parameters described
in Section 3.1. More specifically, the negated logs of these parameters are used as the
weights for transducer transitions.

4.4 Multiword Pairings
In the translation application, source word w and target word v are generalized so
they can be short substrings (compounds) of the source and target strings. Exam-
ples of such multiword pairs are show me:muestréme and nonstop:sin escalas in Fig-
ure 6. The cost for such pairings still uses the same � statistic, now taking the ob-
servations to be the co-occurrences of the substrings in the training bitexts. How-
ever, in order that these costs can be comparable to the costs for simple pairings,
they are multiplied by the number of words in the source substring of the pair-
ing.

The use of compounds in pairings does not require any fundamental changes to
the hierarchical alignment dynamic programming algorithm, which simply produces
dependency trees with nodes that may be compounds. In the transducer construction
phase of the training method, one of the words of a compound is taken to be the pri-
mary or “real” headword. (In fact, we take the least common word of a compound to
be its head.) An extra chain of transitions is constructed to transduce the other words
of compounds, if necessary using transitions with epsilon strings. This compilation
means that the transduction algorithm is unaffected by the use of compounds when
aligning training data, and there is no need for a separate compound identification
phase when the transduction algorithm is applied to test data. Some results for dif-
ferent choices of substring lengths can be found in Alshawi, Bangalore, and Douglas
(1998).
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5. Experiments

5.1 Evaluation Method
In order to reduce the time required to carry out training evaluation experiments,
we have chosen two simple, string-based evaluation metrics that can be calculated
automatically. These metrics, simple accuracy and translation accuracy, are used to
compare the target string produced by the system against a reference human transla-
tion from held-out data.

Simple accuracy is computed by first finding a transformation of one string into
another that minimizes the total weight of insertions, deletions, and substitutions. (We
use the same weights for these operations as in the NIST ASR evaluation software
[National Institute of Standards and Technology 1997].) Translation accuracy includes
transpositions (i.e., movement) of words as well as insertions, deletions, and substi-
tutions. We regard the latter metric as more appropriate for evaluation of translation
systems because the simple metric would count a transposition as two errors: an in-
sertion plus a deletion. (This issue does not arise for speech recognizers because these
systems do not normally make transposition errors.)

For the lowest edit-distance transformation between the reference translation and
system output, if we write I for the number of insertions, D for deletions, S for substi-
tutions, and R for number of words in the reference translation string, we can express
simple accuracy as

simple accuracy = 1 � (I + D + S)=R:

Similarly, if T is the number of transpositions in the lowest weight transformation
including transpositions, we can express translation accuracy as

translation accuracy = 1 � (I0 + D0 + S + T)=R:

Since a transposition corresponds to an insertion and a deletion, the values of I0 and D0

for translation accuracy will, in general, be different from I and D in the computation of
simple accuracy. For Spanish, the units for string operations in the evaluation metrics
are words, whereas for Japanese they are Japanese characters.

5.2 English-to-Spanish
The training and test data for the English-to-Spanish experiments were taken from
a set of transcribed utterances from the Air Travel Information System (ATIS) corpus
together with a translation of each utterance to Spanish. An utterance is typically a sin-
gle sentence but is sometimes more than one sentence spoken in sequence. Alignment
search and transduction training was carried out only on bitexts with sentences up
to length 20, a total of 13,966 training bitexts. The test set consisted of 1,185 held-out
bitexts at all lengths. Table 1 shows the word accuracy percentages (see Section 5.1)
for the trained model, e2s, against the original held-out translations at various source
sentence lengths. Scores are also given for a “word-for-word” baseline, sww, in which
each English word is translated by the most highly correlated Spanish word.

5.3 English-to-Japanese
The training and test data for the English-to-Japanese experiments was a set of tran-
scribed utterances of telephone service customers talking to AT&T operators. These
utterances, collected from real customer-operator interactions, tend to include frag-
mented language, restarts, etc. Both training and test partitions were restricted to bi-
texts with at most 20 English words, giving 12,226 training bitexts and 3,253 held-out
test bitexts. In the Japanese text, we introduce “word” boundaries that are convenient
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Table 1
Simple accuracy=translation accuracy (percent) for the trained
English-to-Spanish model (e2s) against the word-for-word baseline
(sww).

Length � 5 � 10 � 15 � 20 All

sww 45.1/45.8 46.7/48.6 46.5/48.2 45.5/47.1 45.2/46.9
e2s 75.4/75.8 76.3/78.0 75.4/77.0 74.4/76.0 73.3/75.0

Table 2
Simple accuracy=translation accuracy as percentages of Japanese
characters, for the trained English-to-Japanese model (e2j) and the
word-for-word baseline (jww).

Length � 5 � 10 � 15 � 20 All

jww 75.8/78.0 45.2/50.4 40.0/45.4 37.2/42.8 37.2/42.8
e2j 89.2/89.7 74.0/76.6 68.6/72.2 66.4/70.1 66.4/70.1

for the training process. These word boundaries are parasitic on the word boundaries
in the English transcriptions: the translators are asked to insert such a word boundary
between any two Japanese characters that are taken to have arisen from the translation
of distinct English words. This results in bitexts in which the number of multichar-
acter Japanese “words” is at most the number of English words. However, as noted
above, evaluation of the Japanese output is done with Japanese characters, i.e., with
the Japanese text in its natural format. Table 2 shows the Japanese character accuracy
percentages for the trained English-to-Japanese model, e2j, and a baseline model, jww,
which gives each English word its most highly correlated translation.

5.4 Note on Experimental Setting
The vocabularies in these English-Spanish and English-Japanese experiments are only
a few thousand words; the utterances are fairly short (an average of 7.3 words per utter-
ance) and often contain errors typical of spoken language. So while the domains may
be representative of task-oriented dialogue settings, further experimentation would
be needed to assess the effectiveness of our method in situations such as translat-
ing newspaper articles. In terms of the training data required, Tsukada et al. (1999)
provide indirect empirical evidence suggesting accuracy can be further improved by
increasing the size of our training sets, though also suggesting that the learning curve
is relatively shallow beyond the current size of corpus.

6. Concluding Remarks

Formalisms for finite-state and context-free transduction have a long history (e.g.,
Lewis and Stearns 1968; Aho and Ullman 1972), and such formalisms have been ap-
plied to the machine translation problem, both in the finite-state case (e.g., Vilar et al.
1996) and the context-free case (e.g., Wu 1997). In this paper we have added to this
line of research by providing a method for automatically constructing fully lexicalized
statistical dependency transduction models from training examples.

Automatically training a translation system brings important benefits in terms of
maintainability, robustness, and reducing expert coding effort as compared with tra-
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ditional rule-based translation systems (a number of which are described in Hutchins
and Somers [1992]). The reduction of effort results, in large part, from being able
to do without artificial intermediate representations of meaning; we do not require
the development of semantic mapping rules (or indeed any rules) or the creation of
a corpus including semantic annotations. Compared with left-to-right transduction,
middle-out transduction also aids robustness because, when complete derivations are
not available, partial derivations tend to have meaningful headwords.

At the same time, we believe our method has advantages over the approach de-
veloped initially at IBM (Brown et al. 1990; Brown et al. 1993) for training translation
systems automatically. One advantage is that our method attempts to model the nat-
ural decomposition of sentences into phrases. Another is that the compilation of this
decomposition into lexically anchored finite-state head transducers produces imple-
mentations that are much more efficient than those for the IBM model. In particular,
our search algorithm finds optimal transductions of test sentences in less than “real
time” on a 300MHz processor, that is, the time to translate an utterance is less than
the time taken to speak it, an important consideration for our speech translation ap-
plication.
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